what we do

At our secret headquarters in room A304 of the Levine Science Research Center on the Duke University campus in Durham, North Carolina, we use the nematode Caenorhabditis elegans, a versatile model organism, as well as cells in culture in experiments aimed at improving environmental health. Our efforts range from studying the effects of environmental stressors at the molecular and cellular level to effects on the organism as a whole. We have a special interest in mitochondria, and mitochondrial and nuclear DNA damage. By collaborating with other researchers, we also study environmental health in people, other model organisms, and ecosystems.

If you are unfamiliar with environmental toxicology, mitochondria and mitochondrial DNA, nanomaterials, or C. elegans (“worms”), click the links below for brief in

Partial lab picture; missing Latasha Smith, Rashmi Joglekar, and Tess Leuthner

Partial lab picture; missing Latasha Smith, Rashmi Joglekar, and Tess Leuthner


how we do it

We have joined forces with other Duke ecoteams to battle eco-evil:

Including regional groups:


Here are some recent publications from our band of green crimefighters. For a full list, please go to Dr. Meyer’s Google Scholar profile (automatically updated), or his CV at his NSOE site (more or less regularly updated).

Mitochondrial toxicity. Toxicological Sciences, 2018.

The high production volume fungicide pyraclostrobin induces triglyceride accumulation associated with mitochondrial dysfunction, and promotes adipocyte differentiation independent of PPARγ activation, in 3T3-L1 cells. Toxicology, 2018.

Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology, 2017.

Deficiencies in mitochondrial dynamics sensitize Caenorhabditis elegans to arsenite and other mitochondrial toxicants by reducing mitochondrial adaptability. Toxicology, 2017.

Toxicological implications of mitochondrial CYP2E1 localization. Toxicology Research, 2017.

Effects of methyl and inorganic mercury exposure on genome homeostasis and mitochondrial function in Caenorhabditis elegans. DNA Repair, 2017.

Biogas stoves reduce firewood use, household air pollution, and hospital visits in Odisha, India. Environmental Science and Technology, 2017.

Arsenite uncouples mitochondrial respiration and induces a Warburg-like effect in Caenorhabditis elegans. Toxicological Sciences, 2016. (cover feature)

Intracellular trafficking pathways in silver nanoparticle uptake and toxicity in Caenorhabditis elegans. Nanotoxicology, 2016.

Exposure to mitochondrial genotoxicants and dopaminergic neurodegeneration in adult Caenorhabditis elegans. PLoS ONE, 2014.