Bioenergy Carbon Capture and Storage (BECCS) has been proposed to reduce atmospheric CO2 concentrations, but concerns remain about competition for arable land and freshwater. The synergistic integration of algae production, which does not require arable land or freshwater, with BECCS (called “ABECCS”) can reduce CO2 emissions without competing with agriculture. This study presents a techno-economic and life-cycle assessment for co-locating a 121-ha algae facility with a 2,680-ha eucalyptus forest for BECCS. The eucalyptus biomass fuels combined heat and power generation (CHP) with subsequent amine based carbon capture and storage (CCS). A portion of the captured CO2 is used for growing algae and the remainder is sequestered. Biomass combustion supplies CO2, heat, and electricity, thus increasing the range of sites suitable for algae cultivation. Economic, energetic, and environmental impacts are considered. The system yields as much protein as soybeans while generating 61.5 TJ of electricity and sequestering 29,600 t of CO2 per year. More energy is generated than consumed and the freshwater footprint is roughly equal to that for soybeans. Financial break-even is achieved for product value combinations ranging from 1) algal biomass sold for $1,780/t without a carbon credit to 2) algal biomass sold for $100/t with a carbon credit of $396/t. Sensitivity analysis shows significant reductions to the cost of carbon sequestration are possible. The ABECCS system represents a unique technology for negative emissions without reducing protein production or increasing water demand, and should therefore be included in the suite of technologies being considered to address global sustainability.
AUTHOR
Zackary Johnson
PI Johnson Lab
68 posts
You may also like
Current high costs of commercial-scale algal biofuel production prevent the widespread use of this renewable fuel source. One cost-saving approach is the […]
Time series studies have shown that some bacterial taxa occur only at specific times of the year while others are ubiquitous […]
Mesoscale oceanographic features, including eddies, have the potential to alter productivity and other biogeochemical rates in the ocean. Here, we examine the […]
Subsurface chlorophyll maximum layers (SCMLs) are nearly ubiquitous in stratified water columns and exist at horizontal scales ranging from the submesoscale to […]