Publications

Submitted/In revision

  • Hu, S., Xie, S.-P., Seager, R., and Cane, M. (2022) Spatial and seasonal variations of sea surface temperature threshold for tropical convection. Submitted.
  • Wang, H., Hu, S., and Li, X. (2022) An Interpretable Deep Learning Model for ENSO forecasts. Submitted.
  • McMonigal, K., Larson, S., Hu, S., and Kramer, R. (2022) Historical changes in wind driven ocean circulation can accelerate global warming. Submitted.
  • Li, X., Hu, Y., …, and Hu, S. (2022) Climate variations in the past 250 million years and contributing factors. Submitted.

2021

  • Hu, S., Xie, S.-P., and Kang, S. M. (2021) Global warming pattern formation: the role of ocean heat uptake. J. Clim. Accepted.
  • Hu, S., (2021) Refining El Niño projections. Nat. Clim. Change, doi: 10.1038/s41558-021-01126-2. [link]

2020

  • Hu, S., and Fedorov, A. V. (2020) Indian Ocean warming as a driver of the North Atlantic warming hole. Nat. Commun., 11, 4785.
  • Hu, S., Xie, S. P., and Liu, W. (2020) Global pattern formation of net ocean surface heat flux response to greenhouse warming. J. Clim., 33(17), 7503-7522.
  • Liu, W., Fedorov, A. V., Xie, S. P., Hu, S. (2020) Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate, Sci. Adv., 6(26), eaaz4876.
  • Fedorov, A. V., Hu, S., Wittenberg, A. T., Levine, A., and Deser, C. (2020) ENSO Low-frequency modulations and mean state interactions. Chapter 6 of ENSO in a Changing Climate. AGU monograph, in press.
  • Shi, J., Fedorov, A. V., and Hu, S. (2019) A Sea Surface Height Perspective on El Niño Diversity, Ocean Energetics, and Energy Damping Rates. Geophys. Res. Lett., 47(7), e2019GL086742.
  • Peng, Q., Xie, S.-P., Wang, D., Kamae, Y., Zhang, H., Hu, S., Zheng, X.-T., and Wang, W. (2020) Eastern Pacific wind effect on the evolution of El Niño: Implications for ENSO diversity. J. Clim., doi: 10.1175/JCLI-D-19-0435.1

2019

  • Hu, S., and Fedorov, A. V. (2019) Indian Ocean warming can strengthen the Atlantic meridional overturning circulation. Nat. Clim. Change, 9, 747–751. [link] [pdf] [Nature Climate Change News & Views] [Yale News] [Scripps News] [Physics World]
  • Hu, S., and Vallis, G. K. (2019) Meridional structure and future changes of tropopause height and temperature. Q. J. Royal Meteorol. Soc., doi:10.1002/qj.3587 [link]
  • Nie, J., Xia, Y., Hu, S., Yuan, W., Yang, J., and Ma D. (2019) Similarity of atmospheric thermal stratification over elevated surface under radiative-convective equilibrium. Geophys. Res. Lett., doi: 10.1029/2018GL081867. [link]
  • Shi, J., Fedorov, A. V., Hu, S. (2019) North Pacific temperature and precipitation response to El Niño-like equatorial heating: sensitivity to forcing location. Clim. Dyn., doi: 10.1007/s00382-019-04655-x. [link][pdf]

Prior to 2018

  • Hu, S., and Fedorov, A. V. (2018) Cross-equatorial winds control El Niño diversity and change. Nat. Clim. Change, 8, 798-802. [link] [pdf] [Nature Climate Change News & Views] [Yale News]
  • Hu, S., and Boos, W. R. (2017) The physics of orographic elevated heating in radiative-convective equilibrium. J. Atmos. Sci., 74, 2949–2965. [link] [pdf]
  • Hu, S., and Boos, W. R. (2017) Competing effects of surface albedo and orographic elevated heating on regional climate. Geophys. Res. Lett., 44(13), 6966-6973. [link][pdf] [Eos Research Spotlights]
  • Hu, S., and Fedorov, A. V. (2017) The extreme El Niño of 2015-2016 and the end of global warming hiatus. Geophys. Res. Lett., 44(8), 3816-3824. [link] [pdf] [Yale News]
  • Hu, S., and Fedorov, A. V. (2017) The extreme El Niño of 2015-2016: the role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Clim. Dynam., doi: 10.1007/s00382-017-3531-2. [link] [pdf]
  • Hu, S.,and Fedorov, A. V. (2016) Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. U.S.A., 113(8), 2005-2010. [link] [pdf]
  • Williams, R. H., McGee, D., Ridley, D. A., Kinsley, C. W., Hu, S., Fedorov, A. V., Tal, I., Murray, R., deMenocal, P. B. (2016) Glacial to Holocene changes in trans-Atlantic Saharan dust transport and dust-climate feedbacks. Sci. Adv., 2(11), e1600445. [link] [pdf] [MIT News]
  • Fedorov, A. V., Hu, S., Lengaigne, M., and Guilyardi, E. (2015) The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim. Dynam., 44, 1381–1401.[link] [pdf]
  • Hu, S., Fedorov, A. V., Lengaigne, M., and Guilyardi, E. (2014) The impact of westerly wind bursts on the diversity and predictability of El Niño events: An ocean energetics perspective. Geophys. Res. Lett., 41(13), 4654-4663. [link] [pdf]

In preparation

  • Hu, S., et al. (2022) Energetic constraints on relative humidity. In prep.
  • Levy, D., Fedorov, A. V., Hu, S., Khordi, M. (2022) A simple model perspective on past and future changes of global mean surface temperature: from paleo to future projections. In prep.

Non-refereed publications:

  • Chen, N., Thual, S., and Hu, S. (2019) El Nino and the Southern Oscillation: Observations, Elsevier Earth Systems and Environmental Sciences.
  • Hu, S. (2018) El Niño diversity, intraseasonal wind bursts, and decadal climate change. PhD Thesis, Yale University, New Haven, CT.
  • Hu, S., and Fedorov, A. V. (2017) An interplay between westerly and easterly wind bursts shaping El Niño development in 2014-2016. U.S. CLIVAR Exchanges, 71, 26-31. [link] [Invited contribution]
  • Hu, S. (2014) Models for Tropopause Height and Radiative-Convective Equilibrium. WHOI GFD Summer School Ann. Proc. Vol.,2014, 240-260. [link]