Calculus Review Session

Brian Prest
Duke University

Nicholas School of the Environment
August 18, 2017

Topics to be covered

1. Functions and Continuity
2. Solving Systems of Equations
3. Derivatives (one variable)
4. Exponentials and Logarithms
5. Derivatives (multiple variables)
6. Integration
7. Optimization
***Please ask questions at any time!

Functions and Continuity

- Function: $f(x)$
- Mathematical relationship between variables (input "x", output "y")
- Each input (x) is related to one and only one output (y).
- Easy graphical test: does an arbitrary vertical line intersect in more than one place?

Functions, continuous functions

- Are these functions?

$$
y=|x|
$$

$$
x^{2}+y^{2}=1
$$

$|y|=x$

$$
\begin{aligned}
& y=\begin{array}{cc}
\begin{array}{cc}
1 & \text { for } 0 \leq x<1 \\
2 & \text { for } 1 \leq x<3 \\
3 & \text { for } x \geq 3
\end{array}
\end{array} \\
& \underbrace{}_{\mathrm{x}} \begin{array}{l}
\text { Yes! } \bullet \\
\bullet
\end{array}
\end{aligned}
$$

- Continuous: a function for which small changes in x result in small changes in y.
- No holes, skips, or jumps
- Intuitive test: can you draw the function without lifting your pen from the paper?

Functions, continuous functions

- Are these continuous functions?

$$
x^{2}+y^{2}=1
$$

No! (not à function)

No! $\begin{aligned} & |y|=x \\ & \text { not a }\end{aligned}$ function)

$$
\begin{aligned}
& y=\left\{\begin{array}{cc}
1 & \text { for } 0 \leq x<1 \\
2 & \text { for } 1 \leq x<3 \\
3 & \text { for } x \geq 3
\end{array}\right. \\
& \text { No! } \\
& \begin{array}{cc}
\bullet & \bullet \\
0 & 0
\end{array} \\
& \hline
\end{aligned}
$$

Solving Systems of Equations

Solving systems of linear equations

- Count number of equations, number of unknowns
- If \# equations = \# unknowns, unique solution might be possible Example:
A. $y=x$
B. $y=2-x$

Answer: $x=1, y=1$

- If \# equations < \# unknowns, no unique solution. Example:
- $a=1-2 b$. What is the value of b ? Impossible. Any value works
- If \# equations > \# unknowns, generally no solution that satisfies all of them. Example:
- A and B above and third equation: $y=1+x$
- Algebraic solutions
- Graphical solution

Economics Example: Algebraic Approach

- Economics Example

1. Supply: $Q^{\text {supplied }}=2 *$ Price
2. Demand: $Q^{\text {demanded }}=4-2 *$ Price
3. "Market Clearing": $Q^{\text {supplied }}=Q^{\text {demanded }}$

- Substitute equations (1) and (2) into (3) and solve for Price.
- $2 *$ Price $=4-2 *$ Price
$-4 *$ Price $=4 \rightarrow$ Price $=1$
- Substitute price back into (1) and (2)
- $Q^{\text {supplied }}=2 *$ Price $=2$
- $Q^{\text {demanded }}=4-2 *$ Price $=2$
- Price $=1, Q^{\text {supplied }}=2, Q^{\text {demanded }}=2$

Economics Example: Graphical Approach

- Economics Example

1. Supply: $Q^{\text {supplied }}=2 *$ Price
2. Demand: $Q^{\text {demanded }}=4-2 *$ Price
3. "Market Clearing": $Q^{\text {supplied }}=Q^{\text {demanded }}$

- Rearrange equations so they're all in the same " $y=$ " terms
- (1) becomes Price $=\frac{1}{2} Q^{\text {supplied }}$
- (2) becomes Price $=\frac{1}{-2}\left(Q^{\text {demanded }}-4\right)=2-\frac{1}{2} Q^{\text {demanded }}$

Derivatives

Differentiation, also known as taking the derivative (one variable)

- The derivative of a function is the rate of change of the function.
- Often denote it as:

$$
f^{\prime}(x) \text { or } \frac{d}{d x} f(x) \text { or } \frac{d f}{d x}
$$

- Be comfortable using these interchangeably
- We can interpret the derivative (at a particular point) as the slope of the tangent line at that point.

- If there is a small change in x, how much does $f(x)$ change?

Differentiation, also known as taking the derivative

 (one variable)- Linear function: derivative is a constant, the slope

$$
\text { (if } y=m x+b \text {, then } \frac{d y}{d x}=m \text {) }
$$

- Nonlinear function: derivative is not constant, but rather a function of x .

Linear Function

$$
f(x)=2 x-2
$$

Non-Linear Function
$f(x)=-x^{2}+5 x-2$

Differentiable functions

- Differentiable: A function is differentiable at a point when there's a defined derivative at that point.
- Algebraic test: if you know the equation and can solve for the derivative
- Graphical test: "slope of tangent line of points from the left is approaching the same value as slope of the tangent line of the points from the right"
- Intuitive graphical test: "As I zoom in, does the function tend to become a straight line?"
- Continuously differentiable function: differentiable everywhere x is defined.
- That is, everywhere in the domain. If not stated, then negative to positive infinity.
- If differentiable, then continuous.
- However, a function can be continuous and not differentiable! (e.g., $y=|x|$)
- Why do we care?
- When a function is differentiable, we can use all the power of calculus.

Functions, continuous functions

- Are these continuously differentiable functions?

$$
x^{2}+y^{2}=1
$$

No! (not à function)

No! $\begin{gathered}|y|=x \\ \text { not a }\end{gathered}$ function)

Rules of differentiation (one variable)

- Power rule

$$
\begin{aligned}
& -y=k x^{a} \rightarrow \frac{d y}{d x}=a k x^{a-1} \\
& - \text { E.g., } y=2 x^{3} \rightarrow \frac{d y}{d x}=6 x^{2}
\end{aligned}
$$

- Derivative of a constant
- $y=k \rightarrow \frac{d y}{d x}=0$
- E.g., $y=3 \rightarrow \frac{d y}{d x}=0$
- Chain rule

$$
\begin{aligned}
& -y=f(g(x)) \rightarrow \frac{d y}{d x}=\frac{d f}{d g} \frac{d g}{d x} \\
& \\
& - \text { E.g., } y=(1+7 x)^{2} \rightarrow \frac{d y}{d x}=2(1+7 x) * 7=14+98 x \\
& \text { 17 }-f(g(x))=g(x)^{2} \quad g(x)=1+7 x
\end{aligned}
$$

Rules of differentiation (one variable)

- Addition rule
- $y=f(x)+g(x) \rightarrow \frac{d y}{d x}=\frac{d f}{d x}+\frac{d g}{d x}$
- E.g., $y=2 x+x^{3} \rightarrow \frac{d y}{d x}=2+3 x^{2}$
- Product rule

$$
\begin{aligned}
& -y=f(x) * g(x) \rightarrow \frac{d y}{d x}=\frac{d f}{d x} g(x)+\frac{d g}{d x} f(x) \\
& \text { - E.g., } y=x^{2}(3 x+1) \rightarrow \frac{d y}{d x}=2 x(3 x+1)+3 x^{2}=9 x^{2}+2 x
\end{aligned}
$$

- Quotient rule
$-y=\frac{f(x)}{g(x)} \rightarrow \frac{d y}{d x}=\frac{\frac{d f}{d x} g(x)-\frac{d g}{d x} f(x)}{g(x)^{2}}$
- E.g., $y=\frac{x^{2}}{(3 x+1)} \rightarrow \frac{d y}{d x}=\frac{2 x(3 x+1)-3 x^{2}}{(3 x+1)^{2}}$

Second, third and higher derivatives

- Derivative of the derivative
- Easy: Differentiate the function again (and again, and again...)
- Some functions (polynomials without fractional or negative exponents) reduce to zero, eventually
$-y=x^{2}$
- First derivative $=2 x$
- Second derivative $=2$
- Third derivative $=0$
- Other functions may not reduce to zero: e.g., $f(x)=e^{x}$

Exponentials and Logarithms

Exponents and logarithms (logs)

- Logs are incredibly useful for understanding exponential growth and decay
- half-life of radioactive materials in the environment
- growth of a population in ecology
- effect of discount rates on investment in energy-efficient lighting
- Logs are the inverse of exponentials, just like addition:subtraction and multiplication:division

$$
y=b^{x} \leftrightarrow \log _{b}(y)=x
$$

- In practice, we most often use base e (Euler's number, 2.71828182846...).
- We write this as "In": $\ln x=\log _{e} x$.
- Sometimes, we also use base 10.
- When in doubt, use natural log
- Important! In Excel, LOG() is base 10 and LN() is natural log

Rules of logarithms

- Logarithm of exponential function: $\ln \left(e^{x}\right)=x$
- \log of exponential function (more generally): $\ln e^{g(x)}=g(x)$
- Exponential of log function: $e^{\ln x}=x$
- More generally, $e^{\ln h(x)}=h(x)$
- Log of products: $\ln (x y)=\ln x+\ln y$
- Log of ratio or quotient: $\ln \left(\frac{x}{y}\right)=\ln x-\ln y$
- Log of a power: $\ln \left(x^{k}\right)=k \ln x$
- E.g., $\ln \left(x^{2}\right)=2 \ln (x)$

Derivatives of logarithms

- $\frac{d}{d x} \ln x=\frac{1}{x}$. This is just a rule. You have to memorize it.
- What about $\frac{d}{d x} \ln 2 x$?
- Chain Rule: $\frac{d}{d x} \ln (2 x)=\frac{1}{2 x} 2=\frac{1}{x}$
- Or, use the fact that $\ln 2 x=\ln 2+\ln x$ and take the derivative of each term. (Simpler.)
- Also, this means $\frac{d}{d x} \ln k x=\frac{d}{d x}(\ln k+\ln x)=\frac{1}{x}$
- ... for any constant $k>0$.
- ($\ln A$ is defined only for $A>0$.)
- In general for $\frac{d}{d x} \ln g(x)$, where $\mathrm{g}(\mathrm{x})$ is any function of x , use the Chain Rule.
- Why useful? Log-changes give percentages: $d \ln (x)=\frac{d x}{x}$

Derivatives of exponents

- $\frac{d}{d x} e^{x}=e^{x}$. This is just a rule. You have to memorize it.
- What about $\frac{d}{d x} e^{2 x}$?
- To solve, rewrite so that $f(g(x))=e^{g(x)}$ and $g(x)=2 x$.
- The Chain Rule tells us that $\frac{d}{d x} f(g(x))=\frac{d f}{d g} \frac{d g}{d x}$.
- $\frac{d f}{d g}=e^{g(x)}$ and $\frac{d g}{d x}=2$
- $\frac{d}{d x} f(g(x))=\frac{d f}{d g} \frac{d g}{d x}=e^{g(x)} * 2=2 e^{2 x}$
- Analogous to how $\frac{d}{d x} \ln (x)$ is the growth as a percentage, e^{x} grows at a rate proportional to its current value
- E.g., if a population level is given by $y=100 e^{0.05 t}$, where t is time in years, then:
${ }^{24}-\frac{d y}{d t}=0.05 *\left(100 e^{0.05 t}\right)=0.05 y$, so it is growing at a rate of 5%.

Why Exponentials and Logs?

- Numerous applications
- Interest rates (for borrowing or investment)
- Decomposition of radioactive materials
- Growth of a population in ecology
- Annual vs. continuous compounding
- See examples in pdf notes
- With exponential growth/decay, doubling time or half-life is constant, depending on r.
- As r increases, doubling time or half-life is shorter.
- Intuitive: faster rate of increase or decay.

Derivatives with functions of more than one variable

Partial and total derivatives

- All the previous stuff about derivatives was based on $y=f(x)$: one input variable and one output.
- What about multivariate relationships?
- E.g., $f(x, y, z)=x^{2} y^{3}-2 x z$
- Demand for energy-efficient appliances depends on income and prices
- Growth of a prey population depends on natural reproduction rate, rate of growth of predator population, environmental carrying capacity for prey
- Forest size depends on trees planted, trees harvested, natural growth rates, etc.
- Partial derivatives let us express change in the output variable given a small change in the input variable, with other variables still in the mix

Guidelines for partial derivatives

- Partial derivatives denoted $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$, etc. ("curly d")
- Differentiate each term one by one, holding other variables constant
- Suppose you're differentiating with respect to x.
- If a term has x in it, take the derivative with respect to x.
- If a term does not have x in it, it's a constant with respect to x.
- The derivative of a constant with respect to x is zero.
- Examples

$$
\begin{array}{lll}
-f=x^{2} y^{3}+2 x+y & \rightarrow & \frac{\partial f}{\partial x}=2 x y^{3}+2
\end{array} \quad \frac{\partial f}{\partial y}=x^{2} * 3 y^{2}+1 .
$$

Guidelines for partial derivatives

- Cross-partial derivatives: for $f(x, y)$, first $\frac{\partial}{\partial x}$, then $\frac{\partial}{\partial y}$
- Denoted $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)$ or $\frac{\partial^{2} f}{\partial y \partial x}$
- "How does the $\frac{\partial f}{\partial x}$ slope change as y changes?"
- Or the other way around. They're equivalent.
- That is, you could take $\frac{\partial}{\partial y}$ first and then take $\frac{\partial}{\partial x}$ of the result:
$-f=x^{2} y^{3}+2 x \rightarrow \frac{\partial f}{\partial x}=2 x y^{3}+2 \quad \frac{\partial f}{\partial y}=x^{2} * 3 y^{2}$
$-\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=2 x * 3 y^{2} \Leftrightarrow \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=2 x * 3 y^{2}$

Total derivatives / differentials

- Total Derivative: $f(x, y)$. What if both x and y are changing together?
- Represent the change in a multivariate function with respect to all variables
- Economics Example: $f(x, y)=$ profits, where $x=$ price, $y=$ \#customers
- Partial Deriv.: how much would profits change if we \uparrow price, holding \#customers constant?
- Total Deriv.: how much would profits change if we \uparrow price, accounting for resulting loss in customers?
- More general example: both x and y are changing over time, so doesn't make sense to hold one constant
- Sum of the partial derivatives for each variable, multiplied by the change in that variable
- $d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$
- See https://en.wikipedia.org/wiki/Total derivative

Integration

Integration

- Integral of a function is "the area under the curve" (or the line)
- Integration (aka "antiderivative") is the inverse of differentiation
- Just like addition is inverse of subtraction
- Just like exponents are inverse of logarithms
- Thus: the integral of the derivative is the original function plus a constant of integration. Or,
$\int\left(\frac{d f}{d x}\right) d x=f(x)+c$

Integration

- Integration is useful for recovering total functions when we start with a function representing a change in something
- Location, when starting with speed
- Value of natural capital stock (e.g., forest) when we have a function representing its growth rate
- Total demand when we start with marginal demand
- Numerous applications in statistics, global climate change, etc.
- Two functions that have the same derivative can vary by a constant (thus, the constant of integration)
- Example: $\frac{d}{d x}\left(x^{2}+4000\right)=2 x$
- Also, $\frac{d}{d x}\left(x^{2}-30\right)=2 x$
- So we write $\int 2 x d x=x^{2}+c$, where c is any constant.

Rules of integration (one variable)

- Rules can be thought of as "reversing" the rules for derivatives
- Power rule
- $\int x^{a} d x=\frac{1}{a+1} x^{a+1}+c$
- E.g., $\int x^{2} d x=\frac{1}{3} x^{3}+c$
- Integral of a constant
$-\int k d x=k x+c$
- Exponential Rule
$-\int e^{x} d x=e^{x}+c$
- Logarithmic Rule
$-\int \frac{1}{x} d x=\ln (x)+c$
- Integral of sums
$-\int(f(x)+g(x)) d x=\int f(x) d x$

$$
+\int g(x) d x
$$

- Can pull constants out

$$
-\int k f(x) d x=k \int f(x) d x
$$

Indefinite vs. Definite integrals

- With indefinite integral, we recover the function that represents the reverse of differentiation
$-\int \frac{d f}{d x} d x=f(x)+c$
- E.g., $\int x^{2} d x=\frac{1}{3} x^{3}+c$
- This function would give us the area under the curve
- ... but as a function, not a number
- With definite integral, we solve for the area under the curve between two points
$-\int_{a}^{b} \frac{d f}{d x} d x=f(b)-f(a)$
- And so we should get a number
- ... or a function, in a multivariate context (but we won't talk about that today)
- "How far did we move between 1 pm and 2 pm?"

Definite integrals

- Basic approach
- Compute the indefinite integral
- Drop the constant of integration
- Evaluate the integral at the upper limit of integration
- Evaluate the integral at the lower limit of integration
- Calculate the difference: (upper - lower)
- Example:
- $\int_{2}^{6}\left(3 x^{2}+2\right) d x$
- Indefinite integral: $x^{3}+2 x \quad$ (without constant of integration)
- Evaluate this at the upper limit: $6^{3}+2 * 6$
- Evaluate this at the lower limit: $2^{3}+2 * 2$
- Take the difference: $\left(6^{3}+2 * 6\right)-\left(2^{3}+2 * 2\right)=228-12=\mathbf{2 1 6}$
- In math notation: $\int_{2}^{6}\left(3 x^{2}+2\right) d x=\left.\left(x^{3}+2 x\right)\right|_{2} ^{6}=\mathbf{2 1 6}$

Optimization

Optimization: Finding minimums and maximums

- Use first derivatives to see how afunction is changing

$$
\begin{aligned}
& \frac{d y}{d x}>0 \text { : function is increasing } \\
& \frac{d y}{d x}<0 \text { : function is decreasing }
\end{aligned}
$$

- What is happening when $\frac{d y}{d x}=0$?
- One possibility: function is "turning around"
" This is a "critical point"
- Another possibility: inflection point. (consider $y=x^{3}$ at $x=0$.)

Procedure for finding minimums and maximums

- Take first derivative
- Where does first derivative equal zero?
- These are candidate points for min or max ("critical points")
- Example: $f(x)=-x^{2}+5 x-2$
$-\frac{d f}{d x}=-2 x+5:=0 \Rightarrow x=\frac{5}{2}=2.5$
- Take second derivative

- Use second derivatives to determine how the change is changing
- Minimum: $\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}>0$
- Maximum: $\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}<0$
- See technical notes on next slide.
- Ex: $\frac{d^{2} f}{d^{2} x}=-2<0 \Rightarrow$ Maxiumum

Finding minimums and maximums (technical notes)

- Technically, $\frac{d y}{d x}=0$ is a necessary condition for a min or max. (In order to a point to be a min or max, $\frac{d y}{d x}$ must be zero.)
- $\frac{d^{2} y}{d x^{2}}>0$ is a sufficient condition for a minimum, and $\frac{d^{2} y}{d x^{2}}<0$ is a sufficient condition for a maximum.
- But, these are not necessary conditions.
- That is, there could be a minimum at a point where $\frac{d^{2} y}{d x^{2}}=0$.
- This is a technical detail that you almost certainly don't need to know until you take higher-level applied math.
- For a good, quick review of necessary and sufficient conditions, watch this 3-minute video: https://www.khanacademy.org/partner-content/wi-phi/critical-thinking/v/necessary-sufficient-conditions

Inflection points

- Inflection point is where the function changes from concave to convex, or vice versa
- Second derivative tells us about concavity of the original function
- Inflection point: $\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}=0$
- Technical: $\frac{d^{2} y}{d x^{2}}=0$ is a necessary but not sufficient condition for inflection point
- That's enough for our purposes.
- Just know that an inflection point is where $\frac{d y}{d x}=0$ but the point is not a min or a max.
- For more information I recommend:
- https://www.mathsisfun.com/calculus/maxima-minima.html (easiest)
- http://clas.sa.ucsb.edu/staff/lee/Max\ and\ Min's.htm
- http://clas.sa.ucsb.edu/staff/lee/Inflection\ Points.htm
- http://www.sosmath.com/calculus/diff/der13/der13.html
- http://mathworld.wolfram.com/InflectionPoint.html (most technical)

Further resources

- These slides, notes, sample problems (see email)
- Strang textbook: http://ocw.mit.edu/resources/res-18-001-calculus-online-textbook-spring-2005/textbook/
- Strang videos at http://ocw.mit.edu/resources/res-18-005-highlights-of-calculus-spring-2010/ (see "highlights of calculus")
- Khan Academy videos: https://www.khanacademy.org/math
- Math(s) Is Fun: https://www.mathsisfun.com/links/index.html (10 upwards; algebra, calculus)
- Numerous other resources online. Find what works for you.
- Wolfram Alpha computational knowledge engine at http://www.wolframalpha.com/
- Often useful for checking intuition or calculations
- Excellent way to get a quick graph of a function

