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Abstract--Higher penetration of variable energy resources 

such as solar and wind increases the variability and uncertainty 

of net electrical load thereby augmenting the need for 

dispatching resources with sufficient ramping capability (RC). 

The Midcontinent Independent System Operator (MISO) intends 

to modify its Unit Commitment and Economic Dispatch 

algorithms to directly account for the economic value of 

provisioning an adequate level of RC.  In this context, two new 

“products” arise: up ramp capability (URC) and down ramp 

capability (DRC).  

This paper explores the economic, reliability, and 

environmental outcomes of including URC and DRC in the 

market-clearing process by simulating 10-minute operations of a 

test system with an energy mix similar to MISO, for three 

representative months, and two scenarios with low and high wind 

penetration. Changes in system performance are quantified by 

comparing total system costs, scarcity events and pricing, energy 

prices, generation fuel mix, wind-power curtailment, and CO2 

emissions between the conventional market-clearing algorithm 

and the one with flexible ramp capability products. Results 

indicate that adding flexible-RC products facilitate wind energy 

integration while reducing system costs and improving reliability 

metrics; and that these improvements are robust to increases in 

over/under generation penalties and reserve scarcity pricing. 

 

Index Terms—Optimization, Power generation dispatch, 

Power system economics, Power system reliability, Wind energy 

integration, Wind power generation 

I.  INTRODUCTION 

IGHER penetration of Variable Energy Resources (VER) 

such as solar and wind increases the variability and 

uncertainty of net electrical load and therefore augments 

the need for dispatching resources with sufficient ramping 
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capability (RC)  to adjust their power output and help strike a 

balance between demand and supply. 

Independent System Operators (ISOs) in the U.S. have 

explored alternate scheduling processes to ensure the 

provision of enough RC, including the implementation of 

look-ahead Unit Commitment (UC) and Economic Dispatch 

(ED) algorithms, and the creation of RC products. For 

example, the Midcontinent Independent System Operator 

(MISO) - serving 42 million people and containing over 

175GW of total generation capacity, including 13GW of wind 

[1] – has recently implemented a look-ahead UC algorithm 

close to real time that optimizes over the next several 

intervals. However, the current real-time ED algorithm does 

not look ahead to  ensure that potential future ramping needs 

are met [2], and as a consequence the system may not have 

access to sufficient RC in some real-time intervals. When 

shortages of RC are forecasted, MISO’s operators make out-

of-market adjustments to the optimal schedules suggested by 

the UC and ED algorithms.  

While these adjustments are necessary from a reliability 

standpoint they tend to be uneconomic because lack of RC 

may reduce reserve levels below the target, triggering the 

process of “scarcity pricing” which sets the market clearing 

prices at high levels. Further, out of market adjustments hide 

the magnitude and severity of the problem and, by neglecting 

to provide transparent price signals to market participants, do 

not contribute to its prevention [3].  

Although ramping needs may also be caused by changes in 

load, imports and exports, and deviations from instructed 

levels of generation by dispatchable units, the intermittency of 

renewables is a big contributor. As renewable penetration 

increases the issue will only be exacerbated further [3].   

In 2016, MISO plans to implement a modified UC/ED 

algorithm that directly accounts for the economic value of 

provisioning an adequate level of RC as represented by a 

demand curve of ramping. In the context of these 

modifications two new “products” arise: up ramp capability 

(URC) and down ramp capability (DRC). URC and DRC are 

different from other ancillary services. Generators will not 

separately offer RC; instead by submitting an offer to provide 

energy in the day-ahead, they offer to provide whatever 

combination of energy and RC the dispatch model finds most 

cost-effective to the system. Generators selected to provide 

RC will be paid based on their opportunity cost of doing so. 

Similar to reserves, the real-time dispatch may or may not 

deploy the RC procured in prior intervals [3].  

MISO’s plan is presented in two pieces by Navid and 

Assessing Environmental, Economic, and 

Reliability Impacts of Flexible Ramp Products 

in Midcontinent ISO 
Adam Cornelius, Rubenka Bandyopadhyay, Student Member, IEEE, and Dalia Patiño-Echeverri, 

Member, IEEE 

H 

mailto:dalia.patino@duke.edu


 2 

Rosenwald [3]-[4], in a cost-benefit analysis by Navid et al. 

[5], and in a proposal that has been conditionally approved by 

the Federal Energy Regulatory Commission [6]. A similar 

proposal for the California Independent System Operator 

(CAISO) is presented by Xu and Tretheway [7] while Wang 

and Hobbs [8] compare costs and benefits of a deterministic 

dispatch model that includes the ramp product (much like 

MISO’s proposal) both to the standard dispatch model and to 

the stochastic ideal. Most of these analyses of potential 

benefits of RC products are based on small test systems 

containing at most five generating units [4], [7]-[8], with the 

exception of [3], [5] which analyze the entire MISO system 

for 4 sample days from which annual impacts are extrapolated. 

In general these studies indicate that the proposed RC 

products would result in net savings. Although small increases 

in clearing prices are found in some intervals in order to 

procure the RC, overall system costs are lowered due to a 

reduction in scarcity pricing and uplift payments [7]-[8]. 

Estimates of MISO’s net savings due to reductions in 

production costs, unserved reserves and combustion turbine 

commitments are in the range of $3.8-5.4 million/year under 

current conditions with additional smaller savings expected 

from avoiding penalty prices resulting from transmission 

constraint violations [3]-[5].  

The studies also find that RC products would improve 

system reliability and result in increased price-transparency 

when compared to existing ISO practices. The CAISO 

analysis shows that even after incorporating multi-period look-

ahead optimization to clear the real-time market, and even 

under the conditions of perfect foresight of ramping need, 

introducing RC products has the benefit of separating energy 

prices from RC prices resulting in less volatile and more 

transparent prices [7] 

II.  OBJECTIVES 

The purpose of this work is to further explore the 

economic, environmental, and reliability costs and benefits of 

RC products in an analysis that differs from previous studies 

in: a) the detail of representation of MISO’s power generation 

fleet, b) the length and time-resolution of the period of 

analysis, c) the consideration of environmental benefits, d) the 

consideration of high wind penetration scenarios, e) the 

estimation of uncertainty margins for determining RC 

products as a function of factors known to affect net load, and 

f) the exploration of performance of ramp-capability products 

under different design parameters, system penalties for 

under/over generation, and scarcity pricing.  

Our model has 44 coal and gas generators whose operation 

is simulated during 3 representative months, according to 

hourly day-ahead UC and ED algorithms and a 10-minute 

real-time ED algorithm, using real load data from MISO and 

wind data from the National Renewable Energy Laboratory’s 

(NREL’s) Eastern Wind Integration and Transmission Survey 

(EWITS). Because EWITS data is only available in 10-minute 

intervals, this is the granularity used for real-time model runs. 

We estimate changes in total system costs (including the costs 

of reserves and payments for flexi-ramp), scarcity events and 

pricing, overall energy prices, generation fuel mix, wind-

power curtailment, and CO2 emissions, between the standard 

market clearing process (StdMC) and a market clearing 

process that includes ramp capability products (RCMC). 

III.  DATA AND METHODS 

A.  Data 

We set up a representative system that has 6% of MISO’s 

load and generation capacity with roughly the same proportion 

of coal, natural gas, and nuclear power as MISO in 2009 [9]. 

The low-wind penetration system has wind nameplate capacity 

equal to 7% of total generation capacity (the same proportion 

as in 2009); the high wind penetration system has 19% while 

holding all other generation types constant. Other fuel sources 

such as hydro, diesel, and demand resources represent less 

than 5% of MISO generating capacity and are left out of the 

analysis. Significant detail on the test system used and other 

assumptions and methods can be found at [10]. 

A k-means clustering analysis is used to select 44 coal and 

natural gas generators from MISO’s fleet [10]. Cost and 

performance data are taken from various sources. Name plate 

capacity, average heat rates and CO2 emissions are taken from 

eGRID [9] and EIA Form 923 [11]. Required minimum 

generation levels and maximum ramp-rates for each power 

generator are set according to a study from the Northwest 

Power and Conservation Council [12], minimum up and down 

times are from [13], and no-load costs are set based on 

generator type and size from a Lawrence Berkeley National 

Laboratory study [14]. Start-up costs are set equal to the 

median of values for like generator types as reported in 

NRELs Power Plant Cycling Costs study [15].  

We use EIA-reported average prices of coal and natural gas 

for electric power from the five-year period ending in March 

2014 [16] and eGRID heat rate data to estimate generator fuel 

cost, which we assume to be the only marginal cost. Spinning 

reserve offers are assumed to be 20% of energy marginal cost. 

The wind generators included in both the low and high 

wind systems correspond to modeled wind sites in the MISO 

states selected from EWITS [17]. Day-ahead hourly forecasts 

of wind generation required to simulate the day-ahead market 

are set equal to the forecasts provided by EWITS. The wind 

power forecasts for the next 10-minute interval necessary to 

simulate the real time markets are generated assuming a 

percent forecast error independently and identically distributed 

(i.i.d.) as a normal distribution with a mean of zero and a 

standard deviation of 4% (consistent with the 3% standard 

deviation for 5-minute ahead wind forecast in MISO [3]). 

Load data for each 10-minute interval are obtained by 

taking the averages of two consecutive 5-minute intervals of 

the real time load for January, April and July of 2010, 

collected and published by LCG Consulting [18], [10]. Day-

ahead and real-time load forecasts are simulated assuming the 

percent forecast error is normally distributed with a zero mean 

and a standard deviation of 1% for the day-ahead, and 0.2% 

for 10-minute intervals. MISO reports forecast error standard 

deviations of 1% in the day ahead and 0.12% for 5-minute 

forecasts [3]. We assume a higher standard deviation for the 

10-minute forecast to account for the higher variation in 

forecast accuracy associated with the increased length of the 

forecast period [10]. 

Other parameters necessary for the StdMC and RCMC 

models are taken from MISO documents; spinning reserves 
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must be capable of being deployed within 10 minutes with a 

penalty of $1,100/MWh if there is a shortage; there is a 

penalty of $3,500/MWh for under-generation (VOLL) and 

$500/MWh for over-generation [19]; and the demand curve 

for URC and DRC is set as a fixed value of $10/MWh that 

acts as a price cap for both products [3]. A sensitivity analysis 

varying these parameters is reported in Section IV-F. 

B.  Method 

Three baseline models represent StdMC: day-ahead unit 

commitment (B-DAUC), day-ahead economic dispatch (B-

DAED), and real-time economic dispatch (B-RTED). Model 

formulations are presented in tables II-IV. The models assume 

a competitive market where all generators bid their marginal 

costs.  A single iteration of the B-DAUC/B-DAED models 

uses day-ahead forecasts of load and wind generation to 

produce co-optimized hourly commitment, generation and 

reserve schedules, and market prices over a 24-hour period. 

Inputs to the B-RTED model are the commitment schedule 

from the day-ahead market and actual load and wind power 

levels; outputs are least-cost generation and reserve schedules 

and market prices for a single 10-minute interval (without 

considering future forecasts). A full one-day simulation 

consists of one iteration of each of B-DAUC and B-DAED 

and 144 (i.e. 6 intervals/hour × 24 hours) runs of B-RTED.  

The RCMC process is represented with a second set of 

models that include the RC products: RC-DAUC, RC-DAED, 

RC-RTED. The up and down capability requirements 

RCUpDCMaxt and RCDownDCMaxt that are inputs in the RC 

models are set in the real time as: 

RCUpDCMaxt = max{FNetLoadt+1 − ActNetLoadt +

Uncertupt+1
, 0}                                                                  

TABLE I 

NOTATION USED IN MODEL FORMULATIONS 

Indices 
u 

t 

n 

 

Index for dispatchable unit, 𝑢 ∈ 1. . 𝑈   

Index for time interval, 𝑡 ∈ 1. . 𝑇 

Intermediate time interval index used for minimum up and downtime 

requirements, 𝑛 ∈ 𝑡.. 

System Requirement Parameters 
IntLength 

FDemandt 

ActDemandt 

Length of each time interval [minutes] 

Forecasted system demand in interval t [MW] 

Actual system demand in interval t [MW] 

VForecastt 

VAvailablet 

SpinReqt 

ResResponseTime 

RCUpDCMaxt 

RCDownDCMaxt 

RampResponseTime 

RampInts 

Forecasted wind power in interval t [MW] 

Actual available wind power in interval t [MW] 

Quantity of spinning reserve required in interval t [MW] 

Time by which reserve from generator u must be deployable [minutes] 

The targeted amount of up-ramp capability (URC) in interval t [MW] 

The targeted amount of down-ramp capability (DRC) in interval t [MW] 

Response time for ramp capability (used in day-ahead models) [minutes] 

Number of intervals for which ramp capability is considered (used in real-

time model) [intervals] 

System Penalty and Price Parameters 
OverGenPen System-wide over generation penalty [$/MWh] 
UnderGenPen 

SRScarcityPen 

RCUpDCPrice* 

RCDownDCPrice* 

MCPE t * 

MCPSRt* 

System-wide under generation penalty [$/MWh] 

System-wide spinning reserve shortage penalty [$/MWh] 

URC Demand Curve Price [$/MWh] 

DRC Demand Curve Price [$/MWh] 

Market Clearing Price for Energy Market at time t 

Market Clearing Price for Spinning Reserves at time t 

Generator Cost Parameters 
MCu 

SRCu 

NLCu* 

StartCu* 

Marginal Cost of operating dispatchable unit u [$/MW/interval] 

Cost of spinning reserve provided by unit u [$/MW/interval] 

No load cost (fixed operation cost) of operating unit u [$/interval] 

Cost of starting unit u [$] 

Generator Operating Parameters 
Commitu,t 

 

MaxGenu 

MinGenu 

PosRampRateu 

NegRampRateu 

MinUTu 

MinDTu 

InitMinUpu 

 

InitMinDownu 

 

FutureSDu 

 

SUIntsRemainu,t 

 

ShuttingDownu,t 

 
 

Commitment status of unit u in interval t (only a parameter in economic 

dispatch models) 

Maximum generation of unit u [MW] 

Minimum generation of unit u [MW] 

Maximum ramp-up rate of generator u [MW/interval] 

Maximum ramp-down rate of generator u [MW/interval] 

Minimum uptime of unit u [intervals] 

Minimum downtime of unit u [intervals] 

Number of intervals generator u must be up at the start of the optimization 

period due to its initial uptime [intervals] 

Number of intervals generator u must be down at the start of the 

optimization period due to its initial downtime [intervals] 

Number of intervals beyond the end of the RTED time horizon that unit u 

will shut down [intervals] 

Number of intervals remaining until generator u should have fully started 

up and reached its minimum capacity level [intervals] 

Indicates whether the unit is shutting down and the minimum generation 

should be relaxed to 0 [binary] 

Decision Variables 

Genu,t* Average power generation of unit u in interval t [MW] 

SRu,t* Spinning reserve provided by unit u in interval t [MW] 

Commitu,t
#* Commitment status of unit u in interval t (only a decision variable in unit 

commitment models) [binary] 

StartCostu,t
# Startup cost of unit u in interval t [$] 

OverGent Surplus of generation over demand in interval t [MW] 

UnderGent Shortage of generation below demand in interval t [MW] 

UnmetSRt Shortage of spinning reserve below requirement in interval t [MW] 

VSchedulet,t Quantity of variable generation scheduled in interval t [MW] 

UnitRCUpu,t* URC supplied by unit u in interval t [MW] 

UnitRCDownu,t* DRC supplied by unit u in interval t [MW] 

RCUpt System URC procured in interval t [MW] 

RCDownt System DRC procured in interval t [MW] 

Startedu,t* Start-up status of unit u in interval t of a given day d [binary]  

* Used for system cost calculations in Table VI 

# These decision variables are determined by the B-DAUC and RC-DAUC models 

TABLE II 

DAY AHEAD UNIT COMMITMENT MODELS 

Day Ahead Unit Commitment Model for StdMC (DAUC) 

Min ∑ (∑ (Genu,t ∗ MCu + SRu,t × SRCu + Commitu,t × NLCu + StartCostu,t)
U
u=1 +T

t=1

OverGent × OverGenPen + UnderGent × UnderGenPen + UnmetSRt × SRScarcityPen)                                                                                     

(1) 

Subject to: 

∑ Genu,t + VSchedulet + UnderGent − OverGent = FDemandt
U
u=1      ∀ t  (2) 

∑ SRu,t + UnmetSRt ≥ SpinReqt
U
u=1     ∀ t  (3) 

VSchedulet ≤ VForecastt  ∀ t  (4) 

StartCostu,t ≥ StartCu × (Commitu,t − Commitu,t−1)    ∀ u, t  (5) 

Genu,t + SRu,t ≤ MaxGenu × Commitu,t  ∀ u, t  (6) 

Genu,t ≥ MinGenu × Commitu,t  ∀ u, t  (7) 

Genu,t − Genu,t−1 ≤ IntLength × PosRampRateu  ∀ u, t  (8) 

Genu,t−1 − Genu,t ≤ IntLength × NegRampRateu  ∀ u, t  (9) 

SResu,t ResResponseTime⁄ ≤ PosRampRateu  ∀ u, t  (10) 

∑ (1 − Commitu,t) = 0
InitMinUpu
t=1     ∀ u  (11) 

∑ (Commitu,n) ≥ MinDTu ×
t+MinUTu−1
n=t  (Commitu,t − Commitu,t−1)  ∀ u, ∀ t ∈

{InitMinUpu + 1, T − MinUTu + 1}  
(12) 

∑ (Commitu,n − (Commitu,t − Commitu,t−1)) ≥ 0T
n=t     ∀ u, ∀t ∈ {T − MinUTu + 2, T}  (13) 

∑ Commitu,t = 0
InitMinDownu
t=1     ∀ u  (14) 

∑ (1 − Commitu,n) ≥ MinDTu ×
t+MinDTu−1
n=t  (Commitu,t−1 − Commitu,t)  ∀ u, ∀ t ∈

{InitMinDownu + 1, T − MinDTu + 1}  
(15) 

∑ ((1 − Commitu,n) − (Commitu,t−1 − Commitu,t)) ≥ 0T
n=t     ∀ u, ∀t ∈ {T − MinDTu + 2, T}  (16) 

Genu,t, SRu,t, StartCostu,t, OverGent, UnderGent, UnmetSRt , VSchedulet ≥ 0 ∀u, t  (17) 

Day Ahead Unit Commitment for RCMC  (RC-DAUC) 

Objective function is equal to (1) with the additional terms:  

− ∑ (RCUpt × RCUpDCPrice + RCDownt × RCDownDCPrice)T
t=1   (18) 

All constraints the same as (2)-(17) with the following modifications:                                                                                                                                                                                                                                                        

Change to constraint (6):  

Genu,t + SRu,t + UnitRCUpu,t ≤ MaxGenu × Commitu,t  ∀ u, t  (19) 

Change to constraint (7):  

Genu,t − UnitRCDownu,t ≥ MinGenu × Commitu,t  ∀ u, t  (20) 

Additional components for constraint (17):  

UnitRCUpu,t, UnitRCDownu,t, RCUpt, RCDownt ≥ 0 ∀t  (21) 

New Constraints:  

UnitRCUpu,t RampResponseTime⁄ ≤ PosRampRateu  ∀ u, t  (22) 

UnitRCDownu,t RampResponseTime⁄ ≤ NegRampRateu   ∀u, t  (23) 

RCUpt ≤ RCUpDCMaxt  ∀t  (24) 

RCDownt ≤ RCDownDCMaxt  ∀t  (25) 

∑ UnitRCUpu,t ≥ RCUpt
Units
u    ∀t  (26) 

∑ UnitRCDownu,t ≥ RCDownt
Units
u    ∀t  (27) 
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RCDownDCMaxt =

max{ActNetLoadt − FNetLoadt+1+Uncertdownt+1
, 0}    

And in the day-ahead as: 

RCUpDCMaxt =

max {(FNetLoadt+1 − FNetLoadt) x
RampResponseTime

IntLength
+

Uncertupt+1
, 0}                                                                  

RCDownDCMaxt =

max {(FNetLoadt − FNetLoadt+1) x
RampResponseTime

IntLength
+

Uncert𝑑𝑜𝑤𝑛t+1
, 0}  

Where: 

FNetLoadt =  FDemandt − VForecastt      

ActNetLoadt = ActDemandt − VAvailablet  

RampResponseTime =  10 minutes  

Day ahead IntLength =  60 minutes  

The difference in the real-time and day-ahead formulations 

stems from their differing time-granularity (i.e. 10 minute 

intervals for the real-time and 60 minute intervals for the day-

ahead). The real-time model procures RC to ensure that it can 

meet the forecast and uncertainty for the following interval. 

The day-ahead model, on the other hand, procures RC to 

ensure that there is sufficient intra-interval flexibility to 

manage real-time variability and uncertainty that will occur 

when the generating units committed in the day-ahead market 

are used to supply actual load in the more volatile real-time 

market with higher time resolution.  

The estimates of Uncertupt+1
and Uncertdownt+1

depend on 

the time-regime T to which the time interval belongs. We 

partition the historical time series of ActNetLoadt into 24 

different time-regimes T corresponding to three seasons 

(winter, spring/fall, and summer), four time-of-day periods  

(morning, midday, evening, and night) and two day types 

(weekday and weekend) and estimate uncertainty as follows:  

Uncertupt+1
= UncUpPctT  ×  FNetLoadt+1                             

Uncertdownt+1
= UncDownPctT  ×  FNetLoadt+1       

UncUpPctT = AvgRampPctT + 2 × SDRampPctT          

UncDownPctT = AvgRampPctT − 2 × SDRampPctT         

Where AvgRampPctT and SDRampPctT are the average and 

standard deviation of a time series of RampPctt  values 

estimated from a historical times-series of  ActNetLoadt as: 

RampPctt = (ActNetLoadt+1 − ActNetLoadt) ActNetLoadt⁄   

Set in this way, RCUpDCMaxt and RCDownDCMaxt are 

upper bounds of ~95% confidence intervals for ramp 

requirements, assuming they follow a normal probability 

distribution [10]. 

Both sets of models are used independently to simulate 

operations of the system for three one-month intervals 

representing three seasonal load profiles (winter, spring/fall, 

and summer) and two wind penetration scenarios.  

To assess environmental impacts of the introduction of RC 

products, we look at changes in CO2 operational emissions, 

TABLE III 
DAY AHEAD ECONOMIC DISPATCH MODELS  

Day Ahead Economic Dispatch Model for StdMC (B-DAED) 

Min ∑ (∑ (Genu,t × MCu + SRu,t × SRCu)U
u=1 + OverGent × OverGenPen + UnderGent ×T

t=1

UnderGenPen + UnmetSRt × SRScarcityPen)                       

(28) 

Subject to: 

∑ Genu,t + VSchedulet + UnderGent − OverGent = FDemandt
U
u=1      ∀ t                                                                                                                                    (29) 

∑ SRu,t + UnmetSRt ≥ SpinReqt
U
u=1     ∀ t  (30) 

VSchedulet ≤ VForecastt  ∀ t  (31) 

Genu,t + SRu,t ≤ MaxGenu × Commitu,t  ∀ u, t            (32) 

Genu,t ≥ MinGenu × Commitu,t  ∀ u, t     (33) 

Genu,t − Genu,t−1 ≤ IntLength × PosRampRateu  ∀ u, t     (34) 

Genu,t−1 − Genu,t ≤ IntLength × NegRampRateu  ∀ u, t                   (35) 

SRu,t

ResResponseTime
≤ PosRampRateu  ∀ u, t                   (36) 

Genu,t, SRu,t, OverGent, UnderGent, UnmetSRt, VSchedulet ≥ 0 ∀u, t  (37) 

Day Ahead Economic Dispatch Model for RCMC (RC-DAED) 

Objective function is equal to (28) with the additional terms:  

− ∑ (RCUpt × RCUpDCPrice + RCDownt × RCDownDCPrice)T
t=1   (38) 

All constraints the same as (29)-(37) with the following modifications:                                                                                                                                                                                                                                                        

Change to constraint (32):  

Genu,t + SRu,t + UnitRCUpu,t ≤ MaxGenu × Commitu,t  ∀ u, t  (39) 

Change to constraint (33):  

Genu,t − UnitRCDownu,t ≥ MinGenu × Commitu,t  ∀ u, t  (40) 

Additional components for constraint (37):  

UnitRCUpu,t, UnitRCDownu,t, RCUpt, RCDownt ≥ 0 ∀t  (41) 

New Constraints:  

UnitRCUpu,t RampResponseTime⁄ ≤ PosRampRateu  ∀ u, t  (42) 

UnitRCDownu,t RampResponseTime⁄ ≤ NegRampRateu   ∀u, t (43) 

RCUpt ≤ RCUpDCMaxt  ∀t  (44) 

RCDownt ≤ RCDownDCMaxt  ∀t  (45) 

∑ UnitRCUpu,t ≥ RCUpt
Units
u    ∀t  (46) 

∑ UnitRCDownu,t ≥ RCDownt
Units
u    ∀t  (47) 

 

 

 

 

TABLE IV 

REAL TIME ECONOMIC DISPATCH MODELS  

Real Time Economic Dispatch Model for StdMC (B-RTED)  

The objective function is the same as that in B-DAED 

All constraints the same as (29)-(37) with the following modifications: 

Constraint (29) is replaced with: 

∑ Genu,t + VSchedulet + UnderGent − OverGent = ActDemandt
U
u=1      ∀ t                                                                                                                                    

 

(48) 

Constraint (31) is replaced with: 

VSchedulet ≤ VAvailablet  ∀ t  (49) 

Constraint 33 is replaced with: 

Genu,t ≥ (MinGenu × Commitu,t − SUIntsRemainu,t ∗ PosRampRateu ∗ IntLength) ∗ (1 −

ShuttingDownu,t) ∀ u, t                                                             

(50) 

New Constraint 

Genu,t ≤ (FutureSDu + T − t) × IntLength × NegRampRateu   ∀ u,  (51) 

Real Time Economic Dispatch for RCMC (RC-RTED)                            

The objective function is the same as that in RC-DAED 

All constraints the same as 39-47 with the following modifications: 

Constraint (39) is replaced with: 

∑ Genu,t + VSchedulet + UnderGent − OverGent = ActDemandt
U
u=1      ∀ t                                                                                                                                    (52) 

Constraint (31) is replaced with: 

VSchedulet ≤ VAvailablet  ∀ t                                                                         (53) 

Constraint (40) is replaced with: 

Genu,t ≥ (MinGenu × Commitu,t − SUIntsRemainu,t ∗ PosRampRateu ∗ IntLength) ∗ (1 −

ShuttingDownu,t) ∀ u, t                                                               

(54) 

Change to constraint (42):  
UnitRCUpu,t

RampInts∗IntLength
≤ PosRampRateu  ∀ u, t  (55) 

Change to constraint 43  

UnitRCDownu,t

RampInts∗Intlength
≤ NegRampRateu   ∀u, t                                                         (56) 

New Constraints:  

Genu,t + UnitRCUpu,t ≤ (FutureSDu + T − t) × IntLength × NegRampRateu  ∀ u, t                                                                                                            (57) 
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number of power generator start-ups, and wind curtailment by 

directly comparing simulation results for the RCMC and 

StdMC models.  To examine economic impacts we look at 

market clearing prices overall, and under non-scarcity 

conditions, and at total systems costs –accounting for changes 

in uplift payments to generators. Finally for an assessment of 

reliability outcomes we look at the occurrences and amounts 

of energy and reserve shortages. 

IV.  RESULTS 

A.  Procurement of RC 

The RCMC algorithm does not necessarily alter the 

dispatch to procure URC and DRC in every interval. If there is 

no RC requirement or if the system state is sufficiently 

flexible in one direction, no RC will be procured in that 

direction (Table V, categories 1-2). On the other hand, if the 

cost of procurement is higher than the demand curve, none or 

only some of the required RC will be procured (Table V, 

categories 3, 5). 

For all months and wind scenarios, it is more common to 

target RC in the day-ahead than in the real-time. URC 

requirements are zero in 8%-22% of real-time intervals but 

only in 0%-7% of day-ahead intervals (Table V, category 1). 

Similarly, DRC requirements are zero in 12%-25% of real-

time intervals but only in 5%-12% of day-ahead intervals.  

URC is deployed in 50%-76% of the day-ahead intervals 

depending on the month and wind scenario, and in 36%-53% 

of intervals in the real-time (Table V, sum of categories 4 and 

5). These are the only intervals in which the existence of the 

URC product has any impact on commitment or dispatch. In 

the real-time market, no URC is available below the 

$10/MWh price cap in 4-10% of intervals (Table V, category 

3), whereas in the day ahead market at least some targeted 

URC is always available below the price cap except in the July 

low wind scenario. This increased URC deployment in day-

ahead relative to real-time is in part due to the difference in 

frequency that URC is targeted, as noted above, but it is also 

due to the fact that the day-ahead market can commit 

additional resources to meet the URC target, while the real-

time market can only use resources previously committed. In 

intervals when RC affects the real-time dispatch, an average of 

50-75 MW of URC and 133-201 MW of DRC is procured.  

DRC is deployed far less frequently than URC, and 

primarily in high wind scenarios, where it is procured in 0-

19% of day-ahead intervals and 3-17% of real-time intervals. 

This indicates that there is less of a need for downward 

flexibility and/or the system is generally more flexible in the 

downward direction. 

B.  Reliability 

We find that the RC products significantly improve system 

reliability, particularly as wind penetration increases. The 

occurrence of energy and spinning reserve shortages in the 

real-time is in general reduced for the RCMC model.   

In the StdMC model 1-9% of intervals contain energy 

shortages depending on the month and wind scenario while 

24-38% of intervals contain spinning reserve shortages (Fig. 

1). In each month, there are more energy shortages and the 

same or more reserve shortages under the high wind scenario 

(with the exception of July, when reserve shortages are 0.6% 

lower under high wind). The URC and DRC products cause a 

reduction in both types of shortages in all month/wind 

scenario combinations. The shortages of energy and reserve 

occurrences obtained in the simulation are much higher than in 

reality. In 2010, for example, MISO experienced spinning 

reserve shortages in just over 1% of all real-time intervals [20] 

and likely did not have any actual energy shortages. This 

difference is due to tools that ISOs have to deal with potential 

shortage events that are outside of the scope of our model, 

such as a short-term UC run, the ability to curtail load via 

demand response, and the manual dispatch (bypassing the 

TABLE V 
RAMP CAPABILITY PROCUREMENT 

    URC Procurement 

    No URC Procured URC Procured 

    (1) (2) (3) (4) (5) 

January 

Low Wind 

Day Ahead 6% 43% 0% 21% 29% 

Real Time 22% 37% 4% 9% 28% 

January 
High Wind 

Day Ahead 7% 38% 0% 29% 25% 

Real Time 14% 34% 8% 14% 31% 

April Low 

Wind 

Day Ahead 1% 31% 0% 39% 29% 

Real Time 18% 33% 4% 16% 28% 

April High 

Wind 

Day Ahead 1% 30% 0% 43% 26% 

Real Time 11% 27% 9% 19% 34% 

July Low 
Wind 

Day Ahead 0% 24% 3% 18% 55% 

Real Time 21% 29% 8% 7% 36% 

July High 

Wind 

Day Ahead 0% 24% 0% 20% 56% 

Real Time 8% 30% 10% 10% 42% 

    DRC Procurement 

    No DRC Procured DRC Procured 

    (1) (2) (3) (4) (5) 

January 
Low Wind 

Day Ahead 5% 95% 0% 0% 0% 

Real Time 13% 87% 0% 0% 0% 

January 

High Wind 

Day Ahead 7% 93% 0% 0% 0% 

Real Time 12% 85% 0% 2% 1% 

April Low 

Wind 

Day Ahead 7% 93% 0% 1% 0% 

Real Time 14% 86% 0% 0% 0% 

April High 

Wind 

Day Ahead 8% 81% 0% 8% 3% 

Real Time 12% 75% 0% 6% 7% 

July Low 

Wind 

Day Ahead 9% 79% 0% 9% 3% 

Real Time 25% 74% 0% 0% 0% 

July High 
Wind 

Day Ahead 12% 69% 0% 12% 8% 

Real Time 12% 71% 0% 9% 8% 

For each month and wind combination, Table V shows the frequency of 

each category of procurement: (1) No RC targeted; (2) Non-binding RC 

constraint; system was sufficiently flexible; target met without changing 

dispatch; (3) Procurement too expensive; none of targeted RC procured; (4) 
Binding RC constraint; all targeted RC procured; (5) Binding RC constraint; 

some targeted RC procured, but the demand curve limited full quantity. Not 

all rows add to 100% due to rounding. 
 

 

 
Fig. 1. Percent of intervals in real-time economic dispatch with spinning 
reserve scarcity and energy shortages. Shortages in all month/wind 

combinations are reduced with the RCMC model. 
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outcome of the optimization models) of very expensive fast-

ramping generators. Hence our shortage results should be seen 

in terms of the relative reduction from the baseline, which 

indicates a clear benefit from including RC products. 

 

C.  Market Clearing Prices and System Costs 

In order to assess the economic impacts of ramp capability 

products we compare real-time market clearing prices and 

system costs (including uplift payments). Procurement of 

URC and DRC products causes a slight increase of $1.6 - 

$2.7/MWh in the real-time prices under normal (non-shortage) 

conditions but this is more than offset by a reduction in price 

spikes, leading to overall average real-time energy market 

clearing prices that are 15% to 35% lower ($74/MWh-

$140/MWh) than under the StdMC (Fig. 2). Average real time 

energy prices range from $300-$600/MWh, about ten times 

those observed in MISO’s market in 2010 [20] as a 

consequence of the high frequencies of energy and spinning 

reserve shortages in the simulation described in section B, 

which are associated with penalty prices of $3,500/MWh and 

$1,100/MWh respectively. Average prices under non-shortage 

conditions are much closer to MISO’s actual average prices.  

We calculate system costs for each month under the StdMC 

and RCMC as summarized in Table VI by estimating 

generators’ revenue. The generators’ revenue is equal to the 

market revenue –from energy, reserve, and RC sales- plus 

uplift payments which compensate generators when market 

revenue is insufficient to cover both fixed and marginal costs. 

Uplift payments are calculated daily and equal the difference 

in market revenue received and costs incurred – consisting of 

fuel, no-load, and startup costs- by each generation unit. While 

uplift payments are important to generators’ cost recovery, 

they tend to be far less transparent to market participants; all 

else equal, it is preferable for cost recovery to occur via 

market payments. Depending on the month and wind scenario, 

uplift payments are 2%-20% lower and total system costs are 

12%-30% lower when RC products are included (Fig. 3).  

D.  Wind Power Curtailment 

Wind curtailment is infrequent in the StdMC model and 

occurs only during the April and July months under high wind 

penetration. The RCMC model results in fewer instances and 

lower quantity of wind curtailment: 67% fewer real-time 

intervals with curtailment in April (27 MWh less) and 20% 

fewer intervals with curtailment in July (36 MWh less). 

The lack of representation of transmission constraints in 

our models is a likely cause of their low levels of wind 

curtailment relative to MISO’s reality, where curtailment 

occurs primarily in wind-rich, transmission-constrained 

regions [21]. 

E.  Generation Fuel Mix and CO2 Emissions  

We expected that introducing RC products would cause 

fuel switching from less flexible coal generators to more 

flexible natural gas units. This expectation holds true for 4 out 

of 6 month/wind combinations. RC products reduce coal-fired 

generation by 0.02% to 0.19% except for the high wind 

scenarios of January and April when it increases by 0.05% and 

0.11% respectively. The exact mechanism causing these 

change deserves further investigation.  

Due in part to this increase in coal use and none or modest 

reduction in wind curtailment, operational CO2 emissions are 

higher with RC products relative to the baseline in high wind 

scenarios of January and April by 0.11% and 0.26%. There is 

also a small increase in emissions (0.05%) for January under 

low wind. For the rest of the month/wind scenario 

combinations RC products reduce CO2 emissions by 0.03% to 

 
Fig. 2. Average real time market-clearing prices overall and in non-shortage 

intervals. The RCMC algorithm tends to have slightly higher prices in non-
shortage intervals, but much lower prices overall, as shortages (and the 

associated high prices) are reduced relative to the StdMC algorithm.   
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TABLE VI 

COSTS CALCULATIONS FROM OUTPUTS OF STDMC AND RCMC 

StdMC  

Generator Costs for unit u during day d (𝐆𝐂𝐮,𝐝)= 

∑ (Genu,t
RTED × MCu + SRu,t

RTED × SRCu + Commitu,t
DAUC × NLCu + Startedu,t

DAUC ×t∈d

StartCu)  

(58) 

Generator Market Revenue (𝐆𝐌𝐑𝐮,𝐝)= 

∑ (Genu,t
DAED × MCPEt

DAED + max(Genu,t
RTED−Genu,t

DAED , 0) × MCPEt
RTED + SRu,t

DAED ×t∈d

MCPSRt
DAED + max(SRu,t

RTED − SRu,t
DAED , 0) × MCPSRt

RTED  

(59)  

Generator Uplift Revenue (𝐆𝐔𝐑𝐮,𝐝)= 

Max{(GCu,d − GMRu,d),0}                     

(60) 

 

Generator Total Revenue 𝐝𝐮𝐫𝐢𝐧𝐠 𝐚 𝐝𝐚𝐲(𝐆𝐓𝐑𝐮,𝐝)= 

 GMRu,d + GURu,d  

(61) 

 

Uplift Payments to All Generators in month m (𝐓𝐔𝐆𝐦)=  
∑ ∑ (GURu,d)u∈Ud∈m   

(52) 

 

Total Payments to All Generators in month m (𝐓𝐏𝐆𝐦)=  
∑ ∑ (GMRu,d + GURu,d)u∈Ud∈m   

(63) 

RCMC  

Equation (59) is modified to include the additional terms:  

+ ∑ (UnitRCUPu,t
DAED × RCUpDCPrice + max(UnitRCUPu,t

RTED − UnitRCUPu,t
DAED, 0) ×T

t=1

RCUpDCPrice + UnitRCDownu,t
DAED × RCDownDCPrice +

max(UnitRCDownu,t
RTED−UnitRCDownu,t

DAED , 0) × RCDownDCPrice)  

(64) 

*
Superscripts ‘DAUC’,’DAED’ and ‘RTED’ represent results from the 

corresponding models (e.g. Genu,t
DAED represents the average power 

generation of unit u during time interval t per the day ahead economic 

dispatch model). 
 

 

 
Fig. 3. Uplift costs and system costs. Both are lower with the RCMC 
algorithm in all month and wind scenarios. 
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0.35%. These small figures may understate the emissions 

reductions of RCMC for a couple of reasons.  First, RC 

products also result in fewer unit startups which could reduce 

emissions.  Also, RC products reduce wind curtailment, but in 

our simulations the potential for realizing this benefit is very 

limited as wind spillage in the StdMC model occurs 

infrequently even under the high wind scenarios. Until higher 

wind scenarios are explored or more detailed accounting of 

start-up emissions is performed we can only conclude that our 

results demonstrate that the environmental advantages from 

introducing RC products stem from the facilitation of wind 

integration, reducing wind curtailment while lowering system 

costs and increasing reliability, but not necessarily from a 

direct reduction of CO2 emissions through re-dispatch. In the 

sensitivity analysis we explore the impacts on emissions and 

number of startups from increasing the value of the economic 

benefit assigned to RC. 

F.  Sensitivity Analysis 

We perform additional market clearing simulations to 

assess the effect of changes in the price caps assigned to URC 

and DRC, under and over generation penalties, and reserve 

scarcity pricing for the high wind scenario. Table VII shows 

the changes in the parameters for the sensitivity cases.  

We first consider the performance of the RCMC model 

relative to the StdMC model with the same assumptions. As 

discussed above, under base case assumptions, RCMC results 

in better reliability, prices, system costs, and generator start-

ups relative to StdMC. If the URC/DRC prices are augmented 

to $15/MWh, the improvement from RCMC is magnified for 

most performance metrics and all months (sensitivity case 1). 

This is also true for the changes in parameters considered in 

sensitivity cases 3-6. For sensitivity case 2, when URC/DRC 

prices are reduced to $5/MWh, the differences between 

StdMC and RCMC metrics are generally in favor of RCMC 

but they are lower than under the base-case assumptions. 

This leads us to two observations about the attributes of the 

RCMC model: a) if URC/DRC prices are lower, the cost and 

reliability advantages of RCMC over StdMC are reduced, and 

b) the superior cost and reliability performance of RCMC 

relative to StdMC holds and is sometimes enhanced when 

over/under generation penalties and scarcity prices are higher 

(Table VIII and Table IX). 

As in the base case, the impacts on environmental 

performance of introducing RC products are mixed in the 

sensitivity cases. RC products cause higher CO2 emissions for 

the months of January and April for almost all sensitivity 

cases except April case 2, and January case 5.  For July, the 

reduction of emissions from RC products is magnified with 

sensitivity cases 3-6.  The benefit of a reduction in start-ups 

observed in the base case is improved or maintained for all 

sensitivity cases and months except for April. 

V.  CONCLUSION 

Within our scaled-down representation of MISO’s power 

system, we find that the introduction of RC products 

accomplishes the objective of facilitating wind integration 

while reducing system costs. Further, these benefits occur 

hand-in-hand with an improvement in reliability via reductions 

in the magnitude and frequency of intervals with energy or 

reserve shortages. While these shortages in the test system 

occur much more frequently than in MISO due to several 

model simplifications, they also serve as a proxy for intervals 

in which operators, in order to maintain reliability, would 

TABLE VII 

DESCRIPTION OF SENSITIVITY CASES 

Sensitivity case 
RCUpDCPrice 

 ($/MWh) 
RCDownDCPrice  

 ($/MWh) 
OverGenPen  

($/MWh) 
UnderGenPen 

 ($/MWh) 
SRScarcityPen 

 ($/MWh) 

0. BaseCase 
Assumptions 10 10 500 3500 1100 

1. Higher 
RCUpDCPrice 
RCDownDCPrice 

15 15 500 3500 1100 

2. Lower 
RCUpDCPrice 
RCDownDCPrice 

5 5 500 3500 1100 

3. Higher 
OverGenPen 10 10 750 3500 1100 

4. Higher  
UnderGenPen 10 10 500 5250 1100 

5. Higher 
SRScarcityPen  

10 10 500 3500 1650 

Cases 1, and 2 only change the parameters of the RCMC model but not those 

of the StdMC. 

 

 

TABLE VIII 

RELATIVE CHANGES IN COSTS AND PRICES 

 
Relative changes in monthly generator’s total revenue 𝑇𝑃𝐺𝑚, uplift payments 

𝑇𝑈𝐺𝑚and Market Clearing Prices 𝑀𝐶𝑃𝐸 between StdMC and RCMC models 

for scenarios with same assumptions.  

 
 

 

Jan Apr Jul Jan Apr Jul Jan Apr Jul Jan Apr Jul Jan Apr Jul

Base 194 216 213 415 92 393 0.5 0.3 0.7 80 122 93 -1.8 -2.2 -2.7

1 211 283 477 591 254 378 0.6 0.3 0.6 87 159 184 -3.0 -3.1 -5.1

2 89 149 129 27 -353 23 0.2 0.1 0.4 33 85 60 -0.7 -0.9 -0.9

3 193 237 209 415 146 379 0.5 0.3 0.7 83 139 90 -1.8 -2.20 -2.6

4 257 249 237 321 172 396 0.4 0.3 0.7 108 141 101 -1.9 -2.18 -2.6

5 253 405 301 412 250 361 0.4 0.3 0.7 113 218 125 -1.8 -1.99 -2.7

Case

Results as differences between standard and flex ramp models with same 

assumptions (StdMC - FlexRMC) for high wind scenarios

System Costs  

(Million USD)

Uplift
Average Market Clearing 

Price ($/MWh)

No. of 

instances 

Payment 

(Million USD)
Overall

Non-shortage 

intervals

Legend

Improvement due to ramp products Deterioration due to ramp products

Improvement is 

greater than 

under base case

Improvement is less 

than  under base-

case 

Deterioration is less 

than under base 

case

Deterioration is 

greater than under 

base case

TABLE IX 

RELATIVE CHANGES IN ENVIRONMENTAL AND RELIABILITY METRICS 

 
Changes in CO2 emissions (not including start-up emissions), total number of 
generator start-ups and reserve scarcity from RCMC relative to StdMC for 

scenarios with same assumptions. Same color-coding as in Table VIII.  

Jan Apr Jul Jan Apr Jul Jan Apr Jul Jan Apr Jul

Base -17.3 -31.0 5.2 0 6 15 222 357 289 12 17 28

1 -45.0 -40.4 2.4 2 -1 19 233 415 534 14 30 66

2 -14.5 0.3 9.8 7 -8 11 144 321 185 3 15 14

3 -23.0 -53.9 11.3 6 -3 14 226 383 299 14 21 28

4 -0.8 -29.4 13.1 15 1 14 254 320 298 16 17 27

5 4.6 -22.2 12.6 20 37 15 255 388 308 16 24 27

Reserve Scarcity 

No. of instances
 Reserve Scarcity in 

1000 MW

Case

Results as differences between standard and flex ramp models with same 

assumptions (StdMC - RCMC) for high wind scenarios

CO2 Emissions 

(in 1000 tons) 

Total Number 

of generator 

startups
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resort to actions that are outside of the scope of our model. 

Fewer shortage intervals indicate that there should be less 

need to commit expensive combustion turbine generators -

currently used to meet short-term ramping needs- or to 

manually modify the dispatch –which compromises price 

transparency and consistency. Moreover, a transparently 

priced demand for RC may increase the incentives for 

generators to invest in faster-ramping generation. 

 While a simulation of a more realistic test system that 

includes bid-based market clearing, all ancillary services, 

transmission constraints, and short-term UC would be 

beneficial [3], [5], our simplified model allows us to conduct 

parametric analysis of shortage penalty prices, ramp-capability 

demand curve, target levels of spinning reserve and RC, and 

forecast errors for wind and load to determine ways in which 

these parameters can be tuned to enhance the performance of 

RC products. 

 Our exploration of the benefits from increased 

URC/DRC price caps suggests that the performance of these 

products is highly sensitive to this parameter and likely, very 

system dependent. Nevertheless, our results support MISO’s 

anticipated benefits of the RC products under a range of 

system conditions and pricing parameters.   
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