Forest biodiversity and climate at the macro scale

Forest biodiversity and climate at the macro scale


Link to project web site


Over two decades of experimental research and modeling now shifts to eastern North America.  The collaboration is funded by the Macrosystems program of the National Science Foundation and includes:

Jim Clark – Duke University

Mike Dietze – University of Illinois

Andrew Finley – Michigan State University

Alan Gelfand – Duke University

Sean McMahon – Smithsonian

Jackie Mohan – University of Georgia

Maria Uriarte – Columbia University

Climate change is rapidly transforming forests over much of the globe in ways that are not anticipated by current science.  Large-scale forest diebacks, apparently linked to interactions involving drought, warm winters, and other species, are becoming alarmingly frequent.  Models of biodiversity and climate have not provided guidance on if/where/when such responses will occur.  Instead models often predict potential numbers of extinctions, but these forecasts not are linked in any mechanistic way to the processes that could cause them.  Both modeling and field studies rely on aggregate metrics of species presence/absence or relative abundance at regional scales, but climate affects individuals.  Aggregation of individual data to the species level, hides or even qualitatively changes climate effects.  By sampling and analysis at the individual scale across continental variation in climate, this study can link the individual scale processes to regional responses.  This study will exploit existing research sites and the new NEON platform of sites for synthesis of models and data to determine when and where predicting climate impacts on biodiversity is a plausible goal, understand where surprises are likely to occur, and attribute those predictions back to individual tree health and vulnerability to climate risk factors.

The study will provide climate vulnerability forecasts for forest biodiversity that are directly linked to the process scale.  Our goal is provide probabilistic forecasts for the joint distribution of forest responses to climate change, including growth, reproduction, and mortality risk.  For scientists, US Forest Service researchers, and policy makers predictions will anticipate combined risks of increasing drought and longer growing seasons.  Methods developed under this project will be disseminated through training workshops for postdoctoral associates at other universities and resource managers.

All sites have been implemented as of 7/2013


Recent Publications

  • Clark, J.S., A.E. Gelfand, C.W. Woodall, and K. Zhu. 2013. More than the sum of the parts: forest climate response from joint species distribution models, Ecological Applications, in press.
  • Clark, J.S., D.M. Bell, M.C. Kwit, and K. Zhu. 2013. Competition-interaction landscapes for the joint response of forests to climate change. Global Change Biology, in press.
  •  Zhu, K, C. W. Woodall, S. Ghosh, A. E. Gelfand, and J. S. Clark. 2013. Dual impacts of climate change: forest migration and turnover through life history. Global Change Biology, in press.
  • Clark, J.S., D. M Bell, M. Kwit, A. Powell, And K. Zhu. 2013. Dynamic inverse prediction and sensitivity analysis with high-dimensional responses: application to climate-change vulnerability of biodiversity.  Journal of Biological, Environmental, and Agricultural Statistics, 18:376-404.