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New estimates of global mammal
abundance that use relationships
between traits, estimates of range
size, and International Union for
Conservation of Nature’s (IUCN’s)
Red List categories to predict
the biomass of thousands of spe-
cies have been developed by
Greenspoon et al. This approach
and some of the challenges that
contribute to these estimates are
summarized here.
Conservation managers need to identify
species that are in decline. This is harder
to know than it sounds. For at least two
points in time, how many individuals were
there? Most of the planet is not monitored
for most species. How many went unde-
tected in surveys? Do counts balance the
variation in abundance across habitats,
times of day, seasons, human impacts,
and population cycles [1–3]? Some of the
traits that contribute to the vulnerability of
a species also challenge survey efforts
(Figure 1). For largemammals, low popula-
tion densities put them at risk of Allee
effects, while also making them hard
to monitor [4,5]. Small, nocturnal, and
fossorial species are rarely seen and,
when they are, few observers can tell
them apart. Uncharismatic species are
under-reported in crowd-sourced plat-
forms, such as iNaturalist and eBird [6],
which are big contributors to the Global
Biodiversity Information Facility (GBIF).
GBIF is often used to estimate the ranges
of species. Information from a host of
sources can be cobbled together in
meta-analysis, in which the trends in
spatially and temporally unbalanced
data often do not represent population
trends [5,7,8]. Despite the many chal-
lenges, contemporary biodiversity loss
inspires efforts to synthesize. Over the
past century, many (most?) mammal spe-
cies probably lost most of their ranges,
while vertebrates may be disappearing at
a rate of two species per year [9].

Greenspoon et al. [10] offer an ambitious
effort to estimate global mammal abun-
dance. There are two classes of estimate
in this paper. The first class comprises
382 species that are extracted from
IUCN reports (Figure 2); thus, it builds in
the limitations of that effort. The IUCN ta-
bles are a brave attempt to turn multiple
sources of information into species abun-
dance and trends. Take, for example, the
African savanna elephant (Loxodonta
africana). Surveys come from national
parks and game reserves. A fraction of
most populations can be monitored, and
methods vary widely [11]; as they say in
one IUCN report ‘identification of individual
animals, aerial counts, dung counts, and
guesses’. In the IUCN effort, observations
become population estimates, which are
then extrapolated to the area of a site or
reserve. The effective area to which a
survey applies is hard to know, due to
the wide variation in habitats across a
given site.

The IUCN attempts to accommodate het-
erogeneous observation effort and errors
(they can be large) and unknown spatial
distributions. There is an ordinal scale for
uncertainty. Additional decisions address
changes in area over time. Ultimately, the
survey information leads to a table with a
number for population size at two time
points and an area to which those num-
bers apply. This is used to assign the
IUCN threat category. They caution on
the use of these estimates: ‘Taking these
tables’ numbers as concrete estimates
is not appropriate given the model’s struc-
ture and objective. Rather the values
Tre
reflect relative weighting at the site level in
our density model. This relative weighting
is recommended in the IUCN Red List
Guidelines (p. 37 section 4.5.3) and we
applied it as requested to maintain meth-
odological consistency across the more
than 134,000 species assessed for the
IUCN Red List’. Despite this caveat,
IUCN is effectively using them, because
they are the basis for estimates of decline.
Greenspoon et al. use them too, and for
the same reason: when confronted with
so many species, sites, and methods,
there are few options.

The second class of estimates is used for
species not covered in IUCN. The method
of Greenspoon et al. is necessarily indirect
and sure to invite discussion (Figure 2). The
population densities (numbers divided by
areas) of the 382 species included in IUCN
are the basis for predicting non-IUCN
species. The predictors are range size
(not used for rodents), body mass, Red
List category, taxonomic order, trophic
level, and generation time. A regression
calibrated to the 382 IUCN species is used
to predict density for 4805 non-IUCN spe-
cies. These estimated (IUCN) and predicted
(non-IUCN) densities are then extrapolated
to an area that might represent the species
range. Thus, we now need a guess for the
range of every species, another big source
of uncertainty for most species. Finally,
translating numbers to biomass entails the
assumption that 60% of all populations are
adults, and adults weigh twice as much as
juveniles.

Errors from this approach will undoubtedly
be massive, and they will differ by species
and survey method. Aerial counts along
flight lines can offer estimates of animals
per area; there is a count and an effort in
terms of area surveyed, sometimes incorpo-
rating distance [4]. Many other monitoring
approaches cannot estimate animals per
area. Camera traps used for largemammals
and live trapping of small mammals provide
an index of activity, but typically not reliable
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Figure 1. Estimates of density (animals per area) are multiplied by an estimate of species range size to obtain abundance. Both numbers are hard to
estimate. Two of the most abundant mammals estimated by Greenspoon et al. [10] contrast in terms of detection. Due to size and color, African savanna elephants
(Loxodonta africana) are readily identified from aerial surveys during dry seasons at Kruger National Park, where they can be tallied with known effort. A survey yields counts
per area, or density. The white-tailed deer (Odocoileus virginianus), estimated to be most abundant globally, is difficult to monitor, due to coloration and avoidance of locations
and times of day frequented by observers. Camera traps, such as the one that obtained this photo, offer insight on ‘activity’, but they do not give density (animals per area).
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estimates of animals per area [12,13].
Estimates of range suffer from limited knowl-
edge of suitable habitat [14].

In the Greenspoon et al. estimates, even-
toed ungulates come out on top of ter-
restrial wild mammals, led by the North
American white-tailed deer (Odocoileus
virginianus) (Figure 1). Considering
the many sources of uncertainty, the
species rank is intriguing: few studies
compare American deer with African ele-
phants.
Figure 2. Summary of themethod used by Greens
(except range size for rodents). Population density estima
IUCN species. For the latter, population density is pred
groups, abundance is extrapolated with an estimate of th
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A population biologist would not use an
approach like this, thinking instead about
the role of observation effort and error
and how the samples attempt to cover
habitat heterogeneity and fluctuations
from year to year and decade to decade.
By contrast, the estimates needed to
manage a reserve (or interpret demo-
graphic rates and population growth) do
not translate to continents or the globe.

Greenspoon et al. expand the dialog sur-
rounding conservation of the planet’s verte-
TrendsTrends inin EcologyEcology & EvolutionEvolution

poon et al. [10]. Predictors are available for all species
tes come from IUCN and are not available for the non
icted from the model fitted to IUCN species. For both
e range size.
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brates in an important direction. Do all of the
unmeasured errors wash out in a global
extrapolation? This is unlikely. However, the
global abundance of an important species
group gets a new perspective here. Their
study will invigorate the discussion and
motivate revisions to the numbers, a dialog
that could lead to an expanded understand-
ing of biodiversity trends and threats.
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