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Small mammals are important to the functioning of ecological communities with changes to their abundances 
used to track impacts of environmental change. While capture–recapture estimates of absolute abundance are 
preferred, indices of abundance continue to be used in cases of limited sampling, rare species with little data, or 
unmarked individuals. Improvement to indices can be achieved by calibrating them to absolute abundance but 
their reliability across years, sites, or species is unclear. To evaluate this, we used the US National Ecological 
Observatory Network capture–recapture data for 63 small mammal species over 46 sites from 2013 to 2019. We 
generated 17,155 absolute abundance estimates using capture–recapture analyses and compared these to two 
standard abundance indices, and three types of calibrated indices. We found that neither raw abundance indices 
nor index calibrations were reliable approximations of absolute abundance, with raw indices less correlated 
with absolute abundance than index calibrations (raw indices overall R2 < 0.5, index calibration overall R2 > 
0.6). Performance of indices and index calibrations varied by species, with those having higher and less variable 
capture probabilities performing best. We conclude that indices and index calibration methods should be used 
with caution with a count of individuals being the best index to use, especially if it can be calibrated with capture 
probability. None of the indices we tested should be used for comparing different species due to high variation 
in capture probabilities. Hierarchical models that allow for sharing of capture probabilities over species or plots 
(i.e., joint-likelihood models) may offer a better solution to mitigate the cost and effort of large-scale small mam-
mal sampling while still providing robust estimates of abundance.
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Our planet is undergoing an unprecedented change in the 
global environment, creating novel conditions that could funda-
mentally alter the functioning of ecosystems of the world (Sage 
2020). Monitoring species responses to global change is the 
first step to understanding and predicting ecosystem and com-
munity-level consequences, providing insight into the many 
ways in which global change can affect species persistence and 
community composition (e.g., Princé et al. 2013; Furnas 2020), 
migration and movements (e.g., Van Buskirk et al. 2009; Zhu 
et al. 2012), and disease transmission (e.g., Bosch et al. 2018; 
Ludwig et al. 2019). Maintaining long-term and large-scale 
monitoring projects and improving the use of generated data 
will improve the predictive ability of models to inform action 
to mitigate the effects of global change.

Small mammals are important to the functioning of ecolog-
ical communities and could be key indicators of ecosystem 
change over space and time in response to global environmen-
tal change. Small mammals directly affect plant community 
structure, energy and mineral flow, and arthropod communities 
through predation, soil movement, food storage, and nest build-
ing (Grant and French 1980; Schnurr et al. 2004; Dylewski et 
al. 2020). Due to their role as primary seed predators and dis-
persers in forest ecosystems, small mammals may be critical in 
determining which plant species will be successful in response 
to global stressors. The abundance and diversity of small 
mammals also directly affect the success of mesopredators for 
whom they are a major food source (e.g., Krebs et al. 2019). 
However, monitoring of small mammals can be challenging, 
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due to the inherent cost and the heterogeneity of species detect-
ability over space and time (Jones 2011). To reduce cost, stud-
ies of small mammals typically rely on measures of diversity, 
distribution, and relative abundance; however, estimation of 
absolute abundance (i.e., the actual number of individuals) is 
often required for addressing questions related to population 
dynamics, growth rate, viability, and species interactions.

Estimation of absolute abundance for small mammal pop-
ulations typically requires individual identification and large 
sampling effort, capturing and marking as many individuals as 
possible, and applying capture–recapture models to estimate 
absolute abundance and capture probabilities (Otis et al. 1978). 
Typically, a minimum sample size is required (e.g., >25 indi-
viduals for traditional models; Otis et al. 1978) for these mod-
els to produce robust absolute abundance estimates through the 
estimation of capture probabilities. This minimum sample size 
can sometimes be challenging to meet, especially with rare spe-
cies. Since rare species are also often the most vulnerable to 
environmental change, there is a need for alternative measures 
or models that can make meaningful inference for rare species 
while remaining robust to heterogeneity in capture probabili-
ties. To meet this need, two main solutions have been put forth: 
(1) Bayesian methods of abundance estimation appropriate for 
small sample sizes (e.g., sometimes as few as three individu-
als captured; Reppucci et al. 2011); and (2) indices of relative 
abundance. Bayesian methods can be useful in stabilizing esti-
mates for species with small sample sizes by pulling them in 
the direction of the average through data pooling and/or the use 
of informative priors. However, although Bayesian hierarchical 
capture–recapture models have allowed a reduction in the min-
imum necessary sample size relative to traditional maximum 
likelihood estimation (MLE) capture–recapture models, they 
require more expertise to implement and estimates for small 
sample sizes will be very sensitive to prior information and/or 
pooling decisions.

Abundance indices such as trap success rates or counts of 
individuals captured are simpler than capture–recapture to cal-
culate and more commonly used because they allow monitor-
ing of rare species with less rigorous sampling requirements 
and less computational expertise. However, because indices 
typically ignore capture probabilities that may vary over space, 

time, and species, they are prone to bias, leading to erroneous 
inference (Nichols and Pollock 1983; Sollmann et al. 2013). 
Nevertheless, several past studies have concluded that indices 
work well to monitor single-species population trends over time 
(Slade and Blair 2000; Hopkins and Kennedy 2004; Schwemm 
et al. 2018), but struggle to make comparisons across species 
when interspecific capture probabilities vary (Slade and Blair 
2000; Hopkins and Kennedy 2004). Improvement of inference 
from indices may be achieved by calibration with absolute 
abundance, but this has only been done for single species at a 
single site (e.g., Dröge et al. 2020), and whether calibrations 
can then be applied across sites remains unclear (Lambin et 
al. 2000; Slade and Blair 2000). Indeed, there have been no 
studies that have looked at the use and generalizability of 
indices and index calibrations for small mammal monitoring 
over many (>11) species and (>3) geographically diverse sites. 
Furthermore, most validation studies of indices in small mam-
mal trapping report only R2 values, with no reporting of bias 
(but see McKelvey and Pearson 2001) or variation in capture 
probabilities. Thus, there remains a need to explore and charac-
terize the best alternatives to standard capture–recapture mod-
eling that maximize the amount of data used for inference and 
minimize sampling effort while still providing unbiased esti-
mates of abundance.

We used data from small mammal surveys across the United 
States generated by the National Ecological Observatory 
Network (NEON) to evaluate the use of indices for small mam-
mal population and community monitoring. These NEON data 
sets include capture–recapture data for small mammal com-
munities using multiple trapping grids per site per year over 
the continental United States, Alaska, and Puerto Rico. With 
the goal of maximizing the amount of data used for inference 
while reducing sampling effort, we tested how well two abun-
dance indices (1) count of individuals captured per three trap-
nights (hereafter: “iCap,” aka: “M

t+1
”) and (2) trap success 

(total captures per three trap-nights, ignoring individual ID) 
reflected absolute abundance estimates from capture–recapture 
analysis (Table 1). We assessed both indices in their raw form 
and calibrated them using two methods: (1) regression-based 
calibration where a linear relationship is established between 
absolute abundance (i.e., capture–recapture) and the index; and 

Table 1.—Index and index calibration measures used to test the performance of indices against capture–recapture (CR) for monitoring small 
mammals. Each metric is named and defined, giving an example reference for their use and recommendations based on our results for when they 
might be used (with caution) when CR methods are not possible. * indicates methods requiring information from CR or other methods of estima-
tion of true abundance and/or capture probabilities (p).

Metric Definition References When to use 

iCap The count of individuals captured (aka: 
M

t+1
) per 3 nights of sampling

Slade and Blair (2000); 
McKelvey and Pearson (2001)

Short-term snapshot of single 
species at single site

Trap success The count of total captures, ignoring 
individual ID per 3 nights of sampling

Slade and Blair (2000); 
McKelvey and Pearson (2001)

Do not use

Regression-calibrated 
abundance*

A linear relationship is established between 
absolute abundance (i.e., CR) and the index

Brown et al. (1996); Ramesh 
et al. (2013)

Use in place of p-corrected, 
but performance poor

p-corrected iCap 
(conservative)*

iCap corrected using CR P estimates from 
same species at same site

Steinhorst and Samuel (1989); 
Pollock et al. (2002)

Long-term monitoring, single 
species, single/multiple sites

p-corrected iCap 
(flexible)*

iCap corrected using CR P estimates from 
same or different species at different site

Steinhorst and Samuel (1989); 
Pollock et al. (2002)

Long-term monitoring, single 
species, single/multiple sites
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(2) capture probability correction where an index of individual 
counts (iCap) is corrected using capture probabilities estimated 
from capture–recapture (Table 1). We tested two types of iCap, 
one where capture probabilities used were specific to each 
species at each geographic site, and one that allowed capture 
probabilities for a species to be used from the same species at 
a different site or a similar species (Table 1). We tested cor-
relation, predictive ability, consistency, and generalizability of 
each index and calibration method relative to capture–recapture 
abundance estimates.

Materials and Methods
NEON data description and processing.—The NEON data 

set we used contains capture–recapture data for 63 species 
over 46 sites from 2013 to 2019, representing 39% of North 
American small mammal species. Each site contains 3–8 
(mean = 6) replicate trapping arrays of 100 traps set in grids 
with 10-m spacing (Supplementary Data SD1, Fig. 1; NEON 
2020a). Field scientists used baited Sherman live traps for ani-
mal capture, checked daily, and set within 10 days before or 
after the new moon (Thibault 2019). Traps were typically run 
at monthly intervals for 6 months during the growing season 
at a subset of sites (core sites; NEON 2020a), and 3–4 months 
for the rest of the sites. At each site, half of the trap arrays 
were run for multiple nights (mean = 3) and the other half were 
run for a single night. Trapped individuals were tagged with 
either an individually identifiable ear tag or PIT tag (Thibault 

2019). NEON trapping targets small rodents including cricetids 
(New World rats and mice, lemmings, voles), dipodids (jump-
ing mice), heteromyids (kangaroo rats, pocket mice), small 
sciurids (squirrels, chipmunks), and introduced murids (Old 
World rats and mice, gerbils; Thibault 2019). Sampling did not 
target lagomorphs (rabbits, hares, pikas), mustelids (weasels), 
large squirrels, or soricids (shrews). Although some of these 
taxa were incidentally captured, they were removed from this 
analysis. Some captured individuals (n = 453) were incorrectly 
identified at the species level in the field, and we used NEON 
DNA barcoding data (NEON 2020b) to correct those identifi-
cations before analysis.

Capture–recapture analysis.—Under the NEON sampling 
protocol, about half of the trapping grids at each site were 
sampled multiple nights per trapping session, while other 
grids were sampled only a single night per month. Traditional 
capture–recapture abundance estimates require that multiple 
nights of sampling are conducted, omitting data from grids 
that are sampled only a single night. To accommodate all the 
data, we used a Bayesian hierarchical approach wherein trap-
ping arrays sampled for multiple nights share a likelihood with 
arrays that ran only one night, thus providing information on 
capture probability that exploits the information available both 
in repeat- and single-night counts. The approach of Royle et 
al. (2012) was adapted to estimate abundance at replicate trap-
ping arrays within each geographic site during each month and 
year of sampling (Royle et al. 2012; Royle and Converse 2014; 
Sollmann et al. 2015). The model assumes that the abundance 

Fig. 1.—National Ecological Observatory Network (NEON) small mammal trapping design. Trapping took place at 46 geographic sites (circles) 
throughout the United States including Alaska and the territory of Puerto Rico. Each site contained 3–8 (mean = 6) unique trapping arrays (trian-
gles) at which 100 traps were run over 7 years (2013–2019), with samples being taken 1–8 months each year (mean = 4.43).
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at a trapping array g at a given geographic site s is a Poisson 
random variable with an array-specific mean (λ

g
):

Ng ∼ Poisson(λg)

with

log(λg) = β0

where β0 has prior distribution:

β0 ∼ Normal(0, 0.01)

We condition on the total population size NTotal over all G plots 
such that the Ng variables have a multinomial distribution:

N = (N1 . . .NG)|NTotal ∼ Multinom(π|NTotal)

with Ntotal =
∑

g
Ng and multinomial probabilities:

πg =
λg∑
g λg

We use data augmentation to fix the dimensionality of the model 
(i.e., make an unknown sample size “known”) by choosing an 
arbitrarily large super-population size M of 700 individuals for 
each species at each trapping array during each closed session, 
representing a density of roughly 70,000 individuals/km2. We 
embed the multinomial for Ng into a multinomial of the same 
dimension but with larger, fixed sample size by introducing a 
latent super-population variable Ug, the sum of which is equal 
to M, giving U a multinomial distribution:

U|M ∼ Multinom(M;π)

where

πg =
λg∑
g λg

are the same probabilities for target multinomial N. We spec-
ify Bernoulli variables that differentiate between “real” and 
“pseudo-” individuals (i) by:

zi ∼ Bernoulli(ψ)for i = 1, 2 . . . , M

where

ψ =
1
M

∑
g

λ

The capture histories of all individuals of a given species cap-
tured at a geographic site are pooled (i.e., capture histories for 
each individual over all arrays at the site) and we then add an 
individual-level covariate describing the array membership, gi:

gi ∼ Categorical(π)

Both zi and gi are latent for augmented individuals. Estimates 
of abundance at each replicate array within the geographic site 
can be obtained by summing over the individuals with zi = 1 
associated with each array.

The likelihood for the site-level capture history data is there-
fore given by:

yik ∼ Bernoulli(zip)

where p has prior distribution:

p ∼ Unif (0, 1)

where k is the number of capture periods (3) and p is the site-
level capture probability for a given species, assumed constant 
over the 3 days of sampling and between individuals.

Because sampling at each trapping array took place over a 
restricted time period (1–3 days), the assumption of constant 
detection probability p over time is reasonable. While account-
ing for individual heterogeneity in capture probabilities has 
been shown to be important in small mammal studies (e.g., 
Davis et al. 2003), because we are making inference about 
individuals for which we have no individual detection data 
(i.e., those captured in arrays running single nights only) we 
could not adequately model individual heterogeneity in capture 
probabilities.

We ran our model separately for each species within a site/
month/year closed session in JAGS (Plummer 2003) via pack-
age runjags (Denwood 2016) in Program R (Version 3.5.3; R 
Core Team 2017). We skipped species during closed sessions 
with <10 individuals captured at a geographic site and those 
site/month/years with <3 trapping arrays running, for a total of 
9,226 models. We assessed model fit for each species closed 
session with posterior predictive checks (Kéry and Schaub 
2011; Gelman et al. 2014) by calculating the sum of squared 
Pearson residuals. We calculated a Bayesian P-value from pos-
terior simulations and assumed adequate fit if 0.1 < P < 0.9. 
Most models converged (i.e., Gelman–Rubin statistic < 1.1, 
confirmed by examining traceplots) after a burn-in of 5,000 
iterations and sampling of 300,000 iterations, thinning every 
100 samples. Those that did not converge after that number of 
iterations were discarded (n = 114). Resulting abundance esti-
mates are archived and publicly available on Dryad (https://doi.
org/10.5061/dryad.v41ns1rw2; Parsons et al. 2022)

Index calculation.—We calculated two commonly used indi-
ces of abundance: the count of individuals captured (iCap) and 
trap success, both standardized to count/3 days, to see how well 
they aligned with estimates of absolute abundance estimated 
from capture–recapture. iCap is a count of the unique individ-
uals captured and relies on the ability to identify individuals. 
Trap success is the count of animals divided by the sampling 
effort and does not rely on individual marks. We calculated 
each index at the trapping array level.

Regression–calibration.—We used a linear modeling 
approach to examine the relationship between each index of 
abundance and absolute abundance (i.e., abundance estimated 
from capture–recapture; hereafter regression–calibration). 
We weighted this regression for the precision of the absolute 
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PARSONS ET AL.—SMALL MAMMAL ABUNDANCE 5

abundance estimates such that more precise estimates received 
a higher weight and contributed more to the relationship (Jhala 
et al. 2011). We tested three models, one with iCap as the sole 
predictor of absolute abundance, one with trap success as 
the sole predictor, and one that considered additive effects of 
iCap and trap success. We ranked our models using Akaike’s 
Information Criterion (AIC) with the lowest AIC representing 
the best-fit model (Burnham and Anderson 2002) which we 
then used to generate predictions of absolute abundance.

p-corrected iCap.—We calibrated one index, iCap, by using 
the average capture probability of a species at a site estimated 
from capture–recapture analysis to correct iCap counts (hereaf-
ter p-corrected iCap) such that:

N̂g = Cg/ps

where N̂g is the p-corrected abundance estimate for a given 
species at trap array g, Cg is the iCap count, and ps  is average 
capture probability per capture period estimated by capture–
recapture for a given species at geographic site s (Pollock et al. 
2002). We note that iCap is simply a special case of the Huggins 
capture–recapture estimator (Huggins 1989). We tested two 
types of p-correction for iCap: (1) estimates of capture prob-
ability for a given species at a given site could be taken from 
that species, or a species of the same genus, at different sites if 
estimates from the same site were lacking and (2) estimates of 
capture probability had to come from the same species at the 
same site/month/year (hereafter “restricted”).

Index calibration performance, consistency, and generaliz-
ability.—We assessed the overall performance of our raw indi-
ces and index calibrations by summarizing the linear correlation 
of regression-calibrated and p-corrected abundance estimates 
with absolute abundance estimates from capture–recapture. We 
summarized these correlations through R2, relative bias, and 
root mean squared error (RMSE; calibrated for different spe-
cies by dividing by the input data for easy comparison). We 
assessed overall performance across all species and trapping 
arrays and then separately by species to determine how gener-
alizable the relationships were.

We assessed the consistency of the indices and index cal-
ibrations for six widespread species with data from many 
sites. We chose them from two groups to represent the best-
case and worst-case scenarios: three with high variation in 
capture probabilities over time and space (Myodes gapperi, 
Peromyscus keeni, and P. leucopus; SD

p
 = 0.17, 0.18, and 0.17, 

respectively) and three with low variation in capture probabili-
ties (Perognathus parvus, Neotamias townsendii, and Neotoma 
albigula; SD

p
 = 0.1, 0.1, and 0.09, respectively) and for which 

we had abundance estimates at a minimum of 30 arrays/month/
years. For each species, we randomly chose 10 closed array/
month/year sessions from the data to train our index or index 
calibration model, then evaluated how well the resulting model 
predicted abundance at the remaining array/month/years, given 
index data. We replicated this leave-out validation 10 times for 
each species, choosing a new random 10 array/month/years 
for training each time and plotted the resulting RMSE and R2 
values.

We assessed the generalizability of index calibrations by 
examining variation in capture probabilities over space, time, 
and species and their relationship with index calibration per-
formance. We also examined the ability of indices and index 
calibrations to detect the same population changes over time, 
space, and between species as was detected by capture–recap-
ture, evaluating the correlation between trend lines by calculat-
ing Pearson correlation coefficients.

Results
Out of 63 target species captured over a possible 4,900 spa-
tially and temporally closed trapping arrays (i.e., 321 arrays 
sampled in each of 1–41 months), we generated 9,112 (81% 
success) capture–recapture abundance estimates for 47 spe-
cies over 4,275 array replicates. Model fit for capture–recap-
ture models was good, with all species closed sessions having 
Bayesian P-values between 0.1 and 0.9, with most around 0.5 
indicating excellent fit (Supplementary Data SD2; Gelman et 
al. 2014). Data augmentation was sufficient as assessed by 
mean inclusion probabilities (z; Supplementary Data SD3). 
Abundance estimates were not attempted for species with low 
total captures and recaptures due to a tendency for unstable 
estimates and standard errors (i.e., very large or very small; 
19%, <10 individuals per geographic site; Supplementary 
Data SD1).

Both raw indices were positively but weakly correlated with 
absolute abundance, with the iCap index performing better (R2 
= 0.4) than trap success (R2 = 0.3). Index calibrations all per-
formed better than raw indices in terms of fit with p-corrected 
iCap performing better in terms of R2, RMSE, and relative bias 
(overall R2 > 0.6) than regression-calibrated indices (overall R2 
= 0.47; Fig. 2; Supplementary Data SD4). When comparing 
two approaches for calibrating iCap with capture probabilities, 
we found that using values from the same species at the same 
site during the same month/year improved the performance of 
p-corrected iCap over a less restrictive method (Fig. 2). When 
calibrating iCap and trap success through linear regression, 
a model including terms for both iCap and trap success per-
formed best (Supplementary Data SD5).

Heterogeneity in capture probabilities was important to how 
well and how consistently index calibrations predicted capture–
recapture abundance estimates. Capture probability was highly 
variable over sites and over time for some species, though low 
for others (mean.SE = 0.05, range 0.01–0.15; Supplementary 
Data SD4) with spatial variation being generally higher than 
temporal variation (Fig. 3). When we based our indices and 
calibrations on 10 trapping array/month/year closed samples 
(i.e., training) and used the resulting models to predict capture–
recapture abundance estimates in the remaining array/month/
year closed samples (range 28–158; i.e., testing), we found 
lower fit and higher levels of variation in fit for species with 
high variation in capture probability, with higher fit and lower 
levels of variation in fit for species with low variation in capture 
probabilities (Supplementary Data SD6). We found that index 
calibrations were more consistent in their estimates than raw 
indices, especially when indices were corrected for variation 
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in capture probability (p-corrected iCap; Supplementary Data 
SD6). Overall, species with higher average capture probabili-
ties tended to have better fit of calibrated indices to capture–
recapture abundance estimates (Supplementary Data SD7).

The raw and calibrated indices were capable of mirroring 
trends in capture–recapture abundance over time and space, 
achieving Pearson correlation of >0.6 of at least one raw index/
calibration with capture–recapture in 50% of example cases 

(Fig. 4). Over all indices/calibrations, raw iCap had the high-
est level of correlation to capture–recapture estimates 62.5% of 
the time, followed by p-corrected iCap 37.5% of the time (Fig. 
4). However, raw and calibrated indices were prone to errors 
when assessing relative changes in the populations of different 
species with relative community changes over sites, sometimes 
differing widely from those estimated by capture–recapture 
(Supplementary Data SD8).

Discussion
The NEON small mammal data set provides the opportunity 
to explore variation in capture probabilities and the appropri-
ateness of indices over an unprecedentedly large number of 
species, sites, and time periods. Despite the challenge of hav-
ing some trapping arrays sample only a single night, using a 
Bayesian hierarchical approach allowed us to generate cap-
ture–recapture abundance estimates for most (81%) of species/
array/month/year replicates with associated capture probability 
estimates aligning well with previously published estimates 
(Hammond and Anthony 2006). While our joint-likelihood 

Fig. 2.—Correlation of absolute abundance estimates from capture–
recapture analysis with five indices of abundance for small mammals. 
(A) iCap: the count of individuals captured and (B) total count: trap 
success shows raw abundance indices, both scaled to count/3 days. 
The other estimates are calibrated index abundance estimates includ-
ing capture probability (p) − corrected iCap (C, E) and regression-cali-
brated indices (N ~ iCap + trap success; D). Capture probabilities were 
taken from the same species at the same site only (restricted; C) or 
allowed to come from the same species at a different site or a species 
of the same genus (E). The solid black line shows a 1:1 relationship, 
the dotted gray line shows best fit line, and the shading shows the 
density of points. Plots show 17,155 capture–recapture estimates for 
47 species at 321 trapping arrays located at 46 unique geographic sam-
pling sites (mean = 6 arrays per site) over 7 years (2013–2019). Both 
types of p-corrected iCap had similar relative bias, only the restricted 
p-correction is shown in panel F. Both types of p-correction had lower 
relative bias than regression-calibrated indices (F). The index with 
the highest R2, lowest root mean squared error (RMSE), and low rel-
ative bias was p-corrected iCap using a restricted capture probability 
estimate.

Fig. 3.—Boxplots showing how capture probability varies over sites 
within a single month (September 2018; top panel) and over time at a 
single site (BART; bottom panel). Capture probability was estimated 
by capture–recapture analysis. Species shown are those detected at a 
minimum of three sites over at least 5 months.
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PARSONS ET AL.—SMALL MAMMAL ABUNDANCE 7

approach allowed inference on more plots than would be pos-
sible otherwise, we did not attempt to estimate abundance for 

sites with very few captures or very few replicate trapping 
arrays. Although we were quite conservative with our hier-
archical framework, this model could be extended to allow 
additional pooling across species, sites, months, and years 
to increase the power to generate estimates for rare species. 
We caution, however, that estimates for rare species could be 
driven by more common species which may become problem-
atic over months and years given the sometimes drastic cycles 
in small mammal populations. Furthermore, for the rarest of 
species detected at single sites, within single months and/or 
years, pooling of data will be of little benefit. In these cases, 
practitioners are left with a choice: ignore those sites and spe-
cies where abundance cannot be estimated, potentially miss-
ing important information about the most at-risk species, or 
employ other methods less dependent on a minimum sample 
size but potentially sensitive to variation in capture probabil-
ities over time, space, and species (i.e., an index). The use of 
indices to monitor small mammals has been much debated. Our 
study supports past research suggesting that if indices are to be 
used for monitoring, accounting for variation in detection prob-
ability (i.e., iCap) is preferred over indices that ignore detection 
probability (i.e., trap success; Slade and Blair 2000; McKelvey 
and Pearson 2001). In general, iCap captured a larger amount 
of variation and was better correlated with absolute abundance 
estimates from capture–recapture; however, individual species 
varied widely in the strength of that relationship. For individual 
species, iCap worked best when N was small, also consistent 
with past research which has found that the fluctuations of large 
populations over a wide range are more challenging for indi-
ces to track, possibly a result of trap saturation (Schwemm et 
al. 2018). Nevertheless, indices, especially iCap, worked well 
for capturing fluctuations in abundance of single species over 
time and space in 50% of our example cases, with correlations 
being lower over sites. Indices and calibrations tracked cap-
ture–recapture abundance estimates less well for fluctuations 
of several species simultaneously, supporting the concern that 
indices may not be appropriate to monitor communities (Slade 
and Blair 2000; McKelvey and Pearson 2001).

The inability of indices to capture similar patterns to cap-
ture–recapture, especially across sites and between species, 
was likely due to variation in capture probabilities (Nichols 
1986; Watkins et al. 2010). Some species showed substantial 
variation in capture probability over time and space, which 
resulted in poor correlation and correlation consistency (i.e., 
the ability to predict out-of-sample abundance) between index 
and absolute abundance, although high overall capture prob-
ability tended to improve correlation. An inability to account 
for variation in capture probability is the main reason why use 
of raw indices is discouraged (i.e., Nichols and Pollock 1983) 
despite examples of good correlation for some species. Index 
calibrations that make specific use of capture probability esti-
mates can help account for heterogeneity in capture probabili-
ties and improve the use of indices for monitoring of single and 
multiple species, but the choice of which capture probabilities 
to use where they are lacking for rare species is critical. The 
use of capture probabilities to correct iCap not only provided 

Fig. 4.—Ability of indices and index calibrations to reflect population 
changes over time (A) and space (B). For (A), we selected four example 
species at one site over 6 years (2014–2019) for which we had at least 
6 months per year of capture–recapture estimates. For (B), we selected 
four example species during 1 month of 1 year for which we had at 
least four sites at which capture–recapture estimates could be gener-
ated. Dashed lines show raw indices (iCap and trap success). Based on 
Pearson’s correlation coefficient (top left of each subplot), indices were 
well correlated with capture–recapture abundance estimates through 
time and space for some species (e.g., P. parvus, P. maniculatus) but 
poorly correlated for others (e.g., P. leucopus, T. striatus). Overall, iCap 
was the best index in terms of Pearson correlation to capture–recapture 
estimates 62.5% of the time, followed by p-corrected iCap (37.5%).
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better fit to capture–recapture data overall but performed as 
well or better at capturing variation in abundance over time, 
space, and species with lower relative bias than raw indices or 
regression-calibrated indices. This makes sense since capture–
recapture abundance estimates are at their core a correction of 
iCap for capture probabilities. The strength of using a p-cor-
rected index is that capture–recapture modeling could be done 
on a smaller subset of plots within a site to provide the infor-
mation for estimation of capture probabilities to be used with 
other plots less rigorously sampled but for which iCap could 
still be obtained (much in the way of NEON sampling; aka 
“double sampling”; Pollock et al. 2002). Capture probabilities 
to correct iCap could be used from different sites, or potentially 
different but similar species; however, performance of such a 
p-correction was inferior to a more restricted approach, while 
still outperforming raw indices across all species, sites, and 
month/years. This suggests that databases containing capture 
probability estimates for rare species from different sites over 
time throughout their range may be useful to facilitate index 
calibration and improve our understanding of population status 
and trajectories but cannot substitute site/time/species-specific 
capture probabilities where absolute abundance is needed. We 
found that regression-based calibrations were inferior to p-cor-
rected indices in terms of fit, relative bias, and reflection of cap-
ture–recapture trends in abundance over space and time. This 
is consistent with past studies that have found R2-based index 
calibrations to be unreliable (e.g., Gopalaswamy et al. 2015).

Our work supports others that have cautioned against the use 
of indices where capture probabilities can be expected to vary 
over time, space, and species. Most researchers that have writ-
ten on the subject have concluded that capture–recapture esti-
mates remain preferable where possible because of their ability 
to account for heterogeneity in capture probabilities (Slade 
and Blair 2000; Wiewel et al. 2009). However, a major issue 
remains of how to monitor populations of rare species since 
captures will be too low for traditional models. Some authors 
have suggested combining capture–recapture models and iCap, 
with the latter being used for situations where capture–recap-
ture is not possible (e.g., Hanley and Barnard 1999; Slade and 
Blair 2000). However, as pointed out by McKelvey and Pearson 
(2001), this solution is risky because of the differential bias 
where capture–recapture tends to be biased high and iCap low, 
which may result in incomparable estimates. Fortunately, cap-
ture–recapture models have come a long way in the last several 
decades, with Bayesian methods able to leverage prior infor-
mation and accommodate pooling (i.e., share information about 
capture probability over sites and/or species) to improve esti-
mates of abundance for species with sparse data. Nevertheless, 
we did not attempt to generate abundance estimates for sites 
at which fewer than 10 individuals were captured, below that 
recommended for MLE capture–recapture (Otis et al. 1978) but 
above some of the lowest sample sizes for Bayesian capture–
recapture analysis published (e.g., Reppucci et al. 2011). It is 
possible that with additional pooling we could have generated 
abundance estimates for species at sites with extremely low 
captures, but we feel that a more conservative approach allowed 
us to more rigorously explore the specific question of indices 

and index calibration to make specific recommendations about 
their use. Nevertheless, we advise that capture–recapture mod-
eling be used whenever possible and caution that shortcuts via 
the use of indices and index calibrations can provide mislead-
ing results.

Based on our findings, we can make several recommen-
dations in terms of design and analysis for different types of 
small mammal studies (Table 1). Specifically, we consider: (1) 
species with few captures; (2) comparing multiple species; (3) 
long-term monitoring at a single site; (4) long-term monitoring 
at multiple geographically separate sites simultaneously; and 
(5) short-term snapshots at many geographically separate sites.

Species with low captures.—For species with too few cap-
tures for capture–recapture models, individual marks remain 
important since iCap, which relies on individual marks, per-
formed far better than simple trap success. iCap did not perform 
as well as index calibration methods over all species/closed ses-
sions; however, it did well in comparison to p-corrected iCap in 
monitoring trends over time and space for a subset of species. 
Depending on the goal of the monitoring, iCap may be ade-
quate, especially for monitoring trends over time. If absolute 
abundance is the goal, captures could be increased such that 
capture–recapture becomes possible simply by increasing the 
number of sampling days per closed session. If done at a sub-
set of sites where the species is present, then a joint-likelihood 
approach could become feasible for minimal extra effort or 
traditional capture–recapture models could be used to estimate 
capture probability and/or establish a regression–calibration 
for index values, thus improving the overall correlation of the 
index with absolute abundance (i.e., double sampling; Pollock 
et al. 2002). Some recently developed capture–recapture mod-
els allow the use of passive detectors (i.e., camera traps) and 
low (or no) marked animals (e.g., Chandler and Royle 2013; 
Carter et al. 2019) which could further reduce effort associated 
with estimating abundance for species with low captures.

Comparing multiple species.—Our results suggest caution 
when using indices to compare relative abundance of multiple 
species because capture probabilities vary widely between spe-
cies. Methods that account for this variation will provide the 
best inference to compare population trends of different spe-
cies over time and space. Using a joint-likelihood approach or 
p-corrected iCap with some subset of sites/years being sam-
pled for capture–recapture for each species would account for 
variation in capture probabilities; however, both would rely in 
part on adequate capture data. For relatively common species, 
sampling effort could be reduced by using a simple Lincoln–
Petersen two-sample estimator to estimate capture probabilities 
instead of a multi-sample estimator (Pollock et al. 2002).

Long-term monitoring of a single species at a single site.—
We found that indices and their calibrations better correlated 
trends in capture–recapture abundance estimates over time 
than over space. If monitoring a site over a long period of time 
during which capture probabilities would not be expected to 
change, an index calibration method (p-corrected iCap) could 
be adequate, given initial calibration via capture–recapture 
estimates of capture probability. We note, however, that this 
assumption of constant capture probabilities becomes less 
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likely with longer time periods where species-specific behav-
iors may change over time due to changes in the small mammal 
community, changes to the predator community or habitat, and 
climate change. Thus, for longer-term studies using indices we 
strongly recommend a periodic recalibration of the index.

Long-term monitoring a single species at multiple geograph-
ically separate sites simultaneously.—Our results suggest that 
variation in capture probabilities over sites is greater than vari-
ation over time, at least for the time scale considered by our 
study. Thus, an assumption of constant capture probabilities 
over sites is not as reasonable as constant capture probabili-
ties over time. In these cases, practitioners using indices risk 
compounding variation in capture probability over space with 
variation over time. Thus, we suggest the best option is to for-
mally account for those sources of variation through capture–
recapture modeling. In situations where that is not possible, 
indices and their calibrations should be used with caution, and 
independently at each site to account for capture probability 
variation across sites (i.e., p-corrected iCap). Just as for a single 
site being monitored over time, the index should be recalibrated 
regularly over time so ensure changing conditions impacting 
capture probabilities are accounted for as much as possible.

Short-term snapshots of a single species at many geograph-
ically separate sites.—In this scenario we are concerned most 
with variation in capture probabilities over space, but not time. 
Since site-specific factors can be complex in the different ways 
in which they affect capture probabilities, the best course is a for-
mal capture–recapture model with site-specific habitat covariates. 
However, this may not be possible where the snapshot occurs over 
a single night without repeat visits (i.e., a Bioblitz). In this case, 
if there is no option for capture–recapture, iCap is the best option 
but should be used with caution because correlation with abso-
lute abundance will vary depending on the site. As an alternative, 
we suggest a double-sampling approach where capture–recapture 
sampling be undertaken at a small number of trapping grids at 
each site for several nights spanning the wider snapshot to allow 
estimation of capture probabilities and abundance modeling using 
a joint-likelihood approach or p-corrected iCap.

Conclusions.—Making inference for populations of rare spe-
cies is challenging, and indices are an attractive solution. We 
show that accuracy of indices is species-specific and can vary 
over space and time. Calibrated indices are more closely cor-
related with absolute abundance and more reliable but require 
some information from capture–recapture analysis which may 
not always be feasible to obtain. Efficient designs for capture–
recapture (i.e., double sampling) and leveraging of Bayesian 
methods and joint likelihoods may improve our ability to gen-
erate absolute abundance estimates while reducing effort, but 
the rarest of species will remain problematic. Indices for those 
species, if used, should be used with caution and calibrated and/
or validated against absolute abundance as much as possible to 
ensure accurate, meaningful inference.
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Supplementary Data
Supplementary data are available at Journal of Mammalogy 
online.

Supplementary Data SD1.—Summary of National 
Ecological Observatory Network (NEON) small mammal trap-
ping data of 63 species over 46 sites containing 3–8 10 m × 10 
m (mean = 6) replicate trapping arrays of 100 traps each, from 
2013 to 2019. Species are listed in descending order of most 
commonly trapped, showing the number of individuals cap-
tured over all sites, months and years, and the number of total 
recaptures of those individuals. Incidental captures of nontarget 
species are not included. Species names marked with * (n = 18) 
did not have sufficient captures during any site/month/year for 
capture–recapture abundance estimation.

Supplementary Data SD2.—Range of abundance estimates 
generated from capture–recapture analysis over all geographic 
sites in each month and year of sampling. The range of credible 
interval limits is given in parentheses. The range of goodness-
of-fit Bayesian P-values, calculated from the sum of Pearson 
residuals, is also given for each species. Suitable fit is indicated 
by values between 0.1 and 0.9.

Supplementary Data SD3.—The distribution of mean 
inclusion probabilities (z) associated with data augmentation 
for each species at each geographic site. Data come from 46 
National Ecological Observatory Network (NEON) sampling 
sites across the United States containing 3–8 trapping arrays 
each. Separate abundance estimates were generated each array, 
month and year of sampling, totaling 4,026 possible estimates 
for each species. The actual number of estimates possible for 
each species varied based on species range and capture fre-
quency across sites and trapping arrays (cutoff: <10 individuals/
site).

Supplementary Data SD4.—Relationships between two 
calibrated indices and absolute abundance for 32 species of 
small mammal. The species shown had at least five abundance 
estimates that could be used to estimate the R2 and root mean 
squared error (RMSE). We used two different calibrated indi-
ces: (1) we modeled the correlation between an index (the num-
ber of individuals captures [iCap] at an array combined with the 
raw count of animals [including double counts] at that array, 
both scaled to count/3 days) and true abundance estimated from 
capture–recapture, and (2) we corrected iCap with estimated 
capture probabilities from capture–recapture (p-correction). 
We assessed the ability of the model to predict abundance by 
assessing the R2 value of the predictions versus estimates, and 
the RMSE, standardized for the input data, both are shown as 
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“Regression–calibration|p-correction.” We also list the aver-
age capture probability (p) and standard error for each spe-
cies estimated from capture–recapture. Data come from 46 
National Ecological Observatory Network (NEON) sampling 
sites across the United States containing 3–8 trapping arrays 
each. Separate abundance estimates were generated each array, 
month and year of sampling, totaling 4,026 possible estimates 
for each species. The actual number of estimates possible for 
each species varied based on species range and capture fre-
quency across sites and trapping arrays (cutoff: <10 individu-
als/site). Species are sorted by regression-calibrated R2.

Supplementary Data SD5.—Correlation of absolute abun-
dance estimates from capture–recapture analysis and mod-
el-predicted abundance from regression-calibrated indices: the 
number of unique individuals captured (iCap) and trap success 
(counts without individual identification), both standardized to 
count/3 days. Three models were tested, one with iCap as sole 
predictor, one with trap success as sole predictor, and one with 
both indices as predictors. The red line shows a 1:1 relationship 
and the blue line shows best-fit line. The model with both indi-
ces was the best-fitting model based on AIC (~iCap = 50,347, 
~Trap success = 50,103, ~iCap + Trap success = 49,937) with 
highest R2 and lowest root mean squared error (RMSE). All 
models performed better in terms of AIC than an intercept-only 
model (AIC = 54,386). Models were based on 47 species over 
46 sampling sites across the United States containing 3–8 trap-
ping arrays each. Sites were sampled over 7 years (2013–2019), 
with samples being taken 4–12 months each year (mean = 9).

Supplementary Data SD6.—Evaluation of how well indi-
ces and index calibrations from a subset of trap arrays can be 
used to estimate abundance at other trap arrays (over different 
geographic sites, months and years), as measured by error (root 
mean squared error [RMSE]) and fit (R2). To represent the best- 
and worst-case scenarios, we chose six widespread species 
captured at minimum 30 arrays, three of which had low (SD ≤ 
0.1) and three of which had high (SD ≥ 0.18) variation in cap-
ture probability (p) over space and time. For each species, we 
randomly chose 10 arrays from the data to train indices (Trap 
success (A) and iCap (B)) and index calibration models (regres-
sion-calibrated (C), unrestricted p-correction (D), restricted 
p-correction (E)), then evaluated how well indices and calibra-
tions predicted abundance estimated from capture–recapture at 
the remaining arrays. We replicated this leave-out validation 
10 times for each species, choosing a new random 10 arrays 
for training each time and plotting the distribution of resulting 
RMSE and R2 across the 10 replicates. Median fit tended to 
be higher for species with low variation in capture probabil-
ity (i.e., high R2, low RMSE), and variation in fit (i.e., smaller 
IQR) was lowest for index calibrations (especially p-corrected 
calibrations) compared to raw indices, indicating greater con-
sistency of calibrated abundance estimates.

Supplementary Data SD7.—Relationship between regres-
sion-calibrated index fit to capture–recapture data and aver-
age capture probability. (A) shows examples of correlations 
between capture–recapture estimated abundance and calibrated 
index estimated abundance for three species. The three example 

species vary in the fit of calibrated indices to capture–recapture 
estimates and in their average capture probability. (B) shows 
how the fit of calibrated index models as measured by R2 varies 
with average capture probability (p) over 33 species for which 
capture probability could be estimated over at least two trap-
ping arrays. Species with higher average capture probabilities 
tended to have better fit of index calibrations to capture–recap-
ture abundance estimates. All species-level results are pre-
sented in Supplementary Data SD4.

Supplementary Data SD8.—Ability of indices and index 
calibrations to detect relative population changes between spe-
cies over time (A) and space (B). For (A), we selected four 
example species at one site (HARV) over 4 years (2014–2018) 
for which we had at least 4 months per year of capture–recap-
ture estimates for each species. For (B), we selected four exam-
ple species during 1 month of 1 year (8/2019) for which we had 
at least four sites at which capture–recapture estimates could be 
generated. Indices and index calibrations did better reflecting 
relative changes between species over time than over space, but 
some example species peaks in abundance did not align with 
peaks estimated from capture–recapture (i.e., P. maniculatus). 
Relative changes over sites sometimes differed widely from 
those estimated by capture–recapture (i.e., Myodes rutilus).
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