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Indirect climate effects on tree fecundity that come through variation in size and growth

(climate-condition interactions) are not currently part of models used to predict future for-

ests. Trends in species abundances predicted from meta-analyses and species distribution

models will be misleading if they depend on the conditions of individuals. Here we find from a

synthesis of tree species in North America that climate-condition interactions dominate

responses through two pathways, i) effects of growth that depend on climate, and ii) effects

of climate that depend on tree size. Because tree fecundity first increases and then declines

with size, climate change that stimulates growth promotes a shift of small trees to more

fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also

affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity

in the West and increasing it in the East. Continental-scale responses of these forests are

thus driven largely by indirect effects, recommending management for climate change that

considers multiple demographic rates.
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The composition and structure of twenty-first century for-
ests will depend on the seed production needed for tree
populations to keep pace with climate change. North

America is warming and drying out in much of the West. The
dramatic impacts include large-scale die-backs1–3 that are trans-
forming size-species structure4,5. But the decade-scale trends will
depend on the regeneration that follows tree death. Fecundity will
determine the capacity of trees to disperse seed to the shifting
habitats where they can survive in the future6–8; risks to each
species depend not only on the current distribution of fecundity
but also on its trajectory4,9–13. As with many ecological pro-
cesses14–16, noisy, spatially variable fecundity trends are hard to
quantify8,17, but this is only the first problem. Attributing trends
to environmental variables is complicated by individual size,
growth, and resource access18–20. Conservation efforts must
anticipate not just the direct climate effects on this trajectory but
also the indirect effects as growth and changing size structure also
affect fecundity. Because it has thus far been impossible to esti-
mate at continental scales, fecundity is the only major demo-
graphic process that lacks field-based estimates in models of
vegetation change5,21,22. To address these challenges, we built the
continental Masting Inference and Forecasting (MASTIF) net-
work of primary data (Fig. 1), and we developed trend attribution
(TA) to quantify climate impacts, as modulated by the condition
of the organisms themselves. Application to the MASTIF network
shows that indirect effects dominate, operating through stand
structure and growth.

Although a substantial climate-impacts literature has focused
on growth responses to short-term (interannual to a decade)
climate fluctuations3,23, this focus is not based on evidence that
fecundity effects are of secondary importance. The emphasis on
tree growth comes in part from the facts that (i) data are widely

available from inventory plots and tree-ring records, (ii) where
absent they can often be obtained from tree rings for long periods
in the past, and (iii) growth anomalies can often be at least partly
explained by climate anomalies3,23. By contrast, fecundity is not
directly observed for most species and habitats, data accumulate
slowly and with substantial investment, and the effects of climate
anomalies can be overwhelmed by nonlinear, internal feedbacks
on reproductive effort18,22,24–27. Although critical for population
dynamics, a limited role for fecundity could be interpreted from
stand simulators that stabilize dynamics by assuming an external
seed pool28–30. This is done both for lack of estimates, but also
because the contribution of fecundity to dynamics is too poorly
understood to construct models that allow species to coexist; even
models used to explore effects on species diversity depend on
the assumption that seeds remain available even when adults
are not30. Foundational understanding of population growth
makes clear that fecundity contributes directly to fitness31–33,
while the change in size can do so only indirectly. While evidence
points to the direct importance of fecundity for future forests, we
show here that it must be coupled with the indirect role of tree
growth.

We identify and quantify the effects of climate change on
fecundity at the continental scale, including the climate-condition
interaction (CCI) that require individual-scale observations
(Fig. 2). We hypothesized that climate change will be experienced
by organisms, each in its own way. We use the term CCIs to
include, for example, moisture effects that differ for deep-rooted
adults and small saplings26,34 and temperature effects that depend
on light availability35. If CCIs are important, then they must be
quantified at the scale of individuals. We find biogeographic
differences in the indirect effects of climate change, slowing
fecundity change in the West and increasing it in the East.

Fig. 1 Longitudinal sites in the MASTIF network. Colors match ecoregions in Fig. 3. Sites are listed by ecoregion in the Supplementary Data 1.
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Results
TA was developed to quantify change that emerges from both
direct and indirect effects and that are not amenable to traditional
time-series methods. Effects of climate change are increasingly
apparent, including shifts in phenology36 and species range
limits37,38. By contrast, the time series of species-abundance data
typically lack a clear signal16,39,40. No ecological process suffers
more from the signal-to-noise problem than seed production,
where quasiperiodic, order-of-magnitude variation from year to
year and tree to tree8,18,19,25,41,42 can bury long-term trends.
Autoregression models assume a fixed periodicity, but mast
intervals are not fixed, not even within an individual25,35,43. There
are as many time series as there are trees (>105 in this case), but
they must be modeled together because there is dependence. Data
are non-Gaussian (including zeros for immature trees and failed
crops). Trends estimated by meta-analysis may not be compar-
able across studies due to divergent methods and transformations
intended to force non-Gaussian data into traditional time-series
models20. Efforts to determine whether a species is increasing or
decreasing are further challenged by the uneven distribution of
publications. A standard trend analysis of our sites (Fig. 3a)
shows not one trend but rather a broad range, with most species
(bars in Fig. 3b) increasing in some habitats while decreasing in
others. Estimates are readily biased16 due to haphazard habitat
coverage (Fig. 3a).

The MASTIF network includes the primary tree-year data (a
given tree in a given year) that are needed to estimate change and
the contributions of CCI. Data include the canopy environment
(fully exposed to deep shade) and tree size, recognizing that
accelerated growth can speed reproductive maturity44. Ecological
studies have assumed that fecundity continues to increase with
stem diameter (Fig. 2b, solid line)45–49. However, horticultural
practice suggests declines in large trees (Fig. 2b, dashed line), but
the literature is limited50. Several ecological studies also suggest

declines20,51–53, but inference suffers from few observations of
large trees. The MASTIF network offers a broad range of sizes
combined here with weighted regression methods that allowed us
to quantify the effects of both maturation and eventual fecundity
declines (see “Methods” section). Fecundity data include seed
traps (STs) and crop counts (CCs) from longitudinal studies
(Fig. 3a) and opportunistically through the iNaturalist MASTIF
[https://www.inaturalist.org/projects/mastif] project, including
2,566,594 tree-years from 123 species. The dynamic model
accommodates non-Gaussian data and serial and intertree
dependence, with full uncertainty for data, model miss-specifi-
cation, and parameters20. Continental prediction used 7,723,671
trees from inventory plots (see “Methods” section).

TA was developed to decompose direct and indirect effects on
change. For transparency, three climate variables in Fig. 2a are
represented here by a single state variable C. To evaluate
community-wide effects, we report on log (proportionate)
fecundity change,

df
dt

¼ 1
F
dF
dt

¼ dlog F
dt

where F is seeds per tree per year. Proportionate change df/dt is
analyzed because we are interested in effects on species of both
high and low fecundity. Analysis of absolute change dF/dt would
be dominated by the few species that produce the most seeds. To
obtain community change, we average these proportionate
changes over all trees on a plot.

TA entails (i) model fitting and (ii) trend decomposition.
Model fitting estimates responses as fitted coefficients. These
responses are main effects of climate, ∂f/∂C, and size (diameter
G), ∂f/∂G, and their interaction ∂f/∂(GC). Trend decomposition
combines these responses with dense information on the envir-
onment, including individual states (G, C) and their rates of

Fig. 2 Trend attribution (TA) includes direct and indirect pathways for terms in Eq. (1). a Trends in climate variables (since 1990) include minimum T in
spring, mean summer T, and moisture deficit (D= cumulative monthly PET-P). The brown contour separates positive and negative trends. Shaded contours
are green (decreasing) to brown (increasing). b Indirect effects have two elements. An arrow from b to F includes a growth effect (dG/dt) and a climate-
growth interaction (C × dG/dt). An arrow from b to c depends on the uncertain relationship between tree diameter G and fecundity F shown in panel (b). If
fecundity continues to increase with tree size (solid line in b), then accelerated growth (orange arrows are dG/dt) moves trees into more productive
size classes, but not if fecundity eventually declines (dashed line). c Average diameter of trees (restricted to trees >20 cm) is high in the West, meaning
that the effects of tree growth depend on [if] fecundity continues to increase or declines with size in panel (b). The effect of size on fecundity (arrow from
c to F) comes through an interaction with climate (G × dC/dt in Eq. (1)).
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change (dG/dt, dC/dt) (Fig. 2), summarized with three terms,

df
dt

¼ ∂f
∂C

dC
dt

zfflffl}|fflffl{direct

þ ∂f
∂G

dG
dt|fflffl{zfflffl}

growth effect

þ ∂f
∂ GCð Þ G

dC
dt

þ C
dG
dt

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

growth-climate interactions

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{indirect

þ γ|{z}
neither growth nor climate

ð1Þ
The first two terms are both main effects that depend respectively
on rates of change in climate (dC/dt) and tree growth (dG/dt).
The direct effect (first term in Eq. (1)) combines the climate
response with the rate of climate change (Fig. 2a). This direct
effect is followed by three terms that contribute the indirect
effects of size and growth. The third term holds their interaction
(GC) as products of rates (dG/dt, dC/dt) and states (G, C). [Again,
C is a placeholder for multiple environmental variables (see
“Methods” section)]. These are (i) the size-dependent effects of
climate change and (ii) the climate-dependent effects of growth.

The residual γ allows effects that are not attributed to other terms.
The full effect of a climate variable C combines the direct term 1
with its indirect effects in the second and third terms.

Indirect terms are CCI, incorporating climate effects that are
modulated by tree size, G × dC/dt, as when large, deep-rooted
trees experience drought differently from saplings. Conversely, a
change in growth rate has effects that can vary with climate, also a
CCI, C × dG/dt. The indirect effects through growth g(C)= dG/dt
are not shown in Eq. (1), but are given in the “Methods” section.
Depending on how fecundity changes with size (Fig. 2b), climate
stimulation of growth can move small trees into more fecund size
classes. If fecundity eventually declines with size, growth has the
opposite effect on large trees.

TA in Eq. (1) starts from a notion similar to “climate
velocity”9,54, which replaces fecundity in Eq. (1) with distance x
as dx/dt= dx/dC × dC/dt. Rather than distance-over-time in cli-
mate velocity, TA decomposes the climate and size contributions
to fecundity trends over time. It relies on extracting the smooth
trends from volatile seed production data. The terms in Eq. (1)
are available each as a predictive distribution for each tree. There
is an average over trees for each inventory plot. The climate
effects on fecundity trends differ from sensitivity to interannual
variation8,17–19,25,35. A species that reduces seed production in
dry years (negative response to moisture deficit Dj,t in Table S2.1)
may not suffer from dry climates in general—indeed, the capacity
to reallocate under fluctuating conditions can be adaptive. A
negative effect in TA means that species and size classes of the
current forests produce less seed under the decade-scale trends
occurring now, based on responses across climate and habitat
variation.

Indirect effects dominate response. TA shows that continent-
wide trends are dominated by indirect effects. Maps of these effect
in Fig. 4 have different scales, which is necessary to show the
geographic patterns within maps; the scale differences must be
considered when comparing maps. The direct responses in Fig. 4a
are transformed by the heterogeneity of climate trends (Fig. 4b)
and then, indirectly, through tree growth (Fig. 4c). The responses
in Fig. 4a are positive where trees dominate that have high mean
fecundity responses. For example, trees that are most fecund
under high spring T (Fig. 4a, top) and moisture deficit D (bottom)
are concentrated in the Northwest (NW) and Southeast (SE).

The direct responses in Fig. 4a are multiplied by heterogeneous
climate change (Fig. 2a) to yield the direct effects (Fig. 4b). It is
important to recognize that a positive effect of climate change
occurs wherever the response to climate and the direction of
climate change have the same sign. For example, the negative
direct effects of spring T in the Northeast (NE) and Southwest
(SW) (Fig. 4b, top) result from opposing forces: in the NE,
mostly positive responses (Fig. 4a, top) combine with a negative
spring T trend (Fig. 2a), that is, (+) × (−)= (−). In the SW,
negative responses combine with a positive spring T trend, that is,
(−) × (+)= (−). Between is a swath of positive effects stretching
from the NW toward the SE (Fig. 4b, top), where positive
responses overlap with rising spring T (Fig. 2a). The direct effects
of other climate variables are near zero or negative for summer T
(Fig. 4b, middle). The limited direct effects of moisture deficit D is
apparent from the scale differences for maps in Fig. 4b.

The foregoing direct effects are overwhelmed by the indirect
effects (contrast scales in Fig. 4b, c), both as main effects on
growth in the second term and interactions in the third term of
Eq. (1). Whereas the full effects contribute to a positive east/
negative west divide in the effects of spring T (Fig. 4c, top) and
moisture deficit D (Fig. 4c, bottom), the contribution of summer

Fig. 3 Sites and species trends. a Longitudinal studies in black (opacity
proportional to numbers of sites) and opportunistic in white. Shaded
ecoregions are desert/shrub/grass (browns), montane (blues), and mixed
forest (greens). b Trends in mean log (proportionate) fecundity by species
from sites in a range from negative (declining) to positive. As would be the
case for any meta-analysis, the time scales for which trends are evaluated
vary (see “Methods” section). Species belong to color-coded families below
that are listed in Supplementary Data 2. There is no relationship with
phylogeny (i.e., no trend in box color from left to right). Summaries in b
include mean (crosshairs), 95% of site means (bold line), and range of site
means (whiskers). The number of sites (n) contributing to b is
shown below.
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T is primarily negative in the East (Fig. 4c, center). Positive effects
in the East come predominantly through spring T (Fig. 4c, top),
which is transparent because both responses and climate trends
tend to share the same sign (both positive: Figs. 2a and 4a, top).
The full effects could not have been anticipated from the direct
responses because they require consideration of how growth
responds to climate and the effect of size and growth on
fecundity.

To understand continental responses and the large differences
between maps in Fig. 4b, c requires the decomposition of effects,
which is available through the individual terms in Eq. (1). An
important contributor to these differences is the pervasive
fecundity declines that our analysis found for large trees (Fig. 5a).
Due to management and species traits, growth stimulation in the

East speeds the transition of small trees to larger, more fecund
size classes (Fig. 5b). Conversely, much of the West supports trees
that have passed this size. The East–West differences are
amplified by maturation, which is increasing the probability of
seed production in the East, but not the West (Supplementary
Fig. S2.3b). Declining fecundity in large trees (which are also
older in the West, Supplementary Fig. S2.3a) does not necessarily
come from physiological decline (“senescence”) because [declines
can result from] crown architectural changes also occur.

Discussion. Continent-wide impacts of climate change are being
governed by the indirect effects that come through the condition
of individuals. Global change science has steadily improved
understanding of direct responses, including photosynthetic rates,

Fig. 4 Continent-wide causes for fecundity trends. Shaded contours are green (decreasing) to brown (increasing). Responses to climate variables (∂f/∂C)
in a are multiplied by climate change (×dC/dt) in Fig. 2a to give the direct effect (∂f/∂C × dC/dt) in panel (b) (first term of Eq. (1)). The direct effect in b is
added to the indirect effect that comes through tree growth (terms 2 and 3 of Eq. (1)) to give the full effect in panel (c). Units are proportionate change in
fecundity per °C or per mm[-month] moisture deficit in panel (a) and per year in panels (b, c). White areas lack inventory plots. The brown contour
indicates zero.

Fig. 5 Indirect effects produce an East–West contrast. a Fecundity rising then falling with size, for a common eastern hardwood (Q. alba) and western
conifer (A. concolor) plotted on the square root scale. The predictive mean (black line) is bounded by the 90% credible interval (dark shading) and the 90%
predictive interval (light shading) over all tree-years. b The growth effect includes terms in Eq. (1) that are multiplied by dG/dt, that is, ∂f/∂G+ ∂f/∂(GC) ×
C (units are log f/yr). Averages shift from positive in the East to near zero or negative in the West, where more trees are near or past the diameter where
growth stimulation increases fecundity.
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water use, and demography25,55,56 and the abundances of spe-
cies40. Lagging behind is the understanding of interactions and
indirect effects18; individual responses to climate do not predict
responses of canopies57, just as species responses do not predict
outcomes of competition40. However, climate variation operates
on individual organisms that see that change differently. From the
multitude of individual traits that affect climate response, we
show that size and growth differences provide important insights
on continent-wide change. By combining detailed habitat change
with the individual condition (Fig. 4), TA shows the dominance
of indirect effects.

The geographically coherent picture of change that emerges
from TA contrasts with inconclusive results offered by meta-
analysis of trends. For example, the conflicting interpretations
from recent studies of insect abundances16,58 reflect over-
sensitivity to precisely which sites and species were included in
each meta-analysis58. Indeed, simple trend analysis of our sites
(Fig. 3b) is no more informative than that of ref. 58 (their Fig. 2),
both showing that nearly every species is increasing and
decreasing somewhere. Only long time series can provide reliable
estimates of trends for erratic data, but the duration is not enough
—the unrepresentative geographic distribution of sites precludes
an interpretation of overall trends. TA does not attempt to extract
signal or extrapolate from noisy data, [instead of] exploit-
ing instead relationships between varying climate and individual
condition. It benefits from dense geographic coverage of sites, but
can provide insight without it, relying primarily on adequate
coverage in covariate space rather than geographic space.

TA adds value to existing efforts because climate change is
heterogeneous not only in rate but also in sign (Fig. 2). By
exposing the trends masked by interannual and intertree volatility
of seed production while incorporating effects of additional
variables TA provides much-needed perspectives on patterns and
processes that affect individuals. Because climate variables
interact with one another and with the individual condition
(CCI), models need to not only find coefficients for their effects
(Fig. 4a) but also combine them with the changes in climate that
are happening now (Fig. 4c). Current understanding suggests that
fecundity is also responding to variables that could not be
incorporated into this analysis, including changing CO2

44,
irradiance and clouds59, and soils, depending only on data
availability and distribution across sites.

TA can complement efforts based on stand simulators and
species distribution models by quantifying contemporary change
and extracting the reasons for it. For instance, because stand
simulators rely on immigration to achieve species coexistence,
fecundity estimates are mostly absent and without direct or
indirect effects of climate that are based on field data. TA
combines growth with fecundity estimates at the tree-year scale
for understanding biogeographic consequences, thus offering an
alternative perspective to stand simulators and map-based
predictions of future biodiversity60.

Climate change is driving fecundity in two directions across
North America, predominantly [declining] negative in the West
and [increasing] positive in the East. Rising temperatures and
moisture deficits are negative contributions in the West
[contributing to western declines], while seasonal temperature
differences have opposing [effects] contributions in the East
(Fig. 4c). The full effect differs from direct effects (Fig. 4b, c) due
to indirect effects of climate on tree growth. Growth changes have
limited impact on fecundity trends in the West because few trees
are nearing maturity (Supplementary Fig. S2.2b), and fecundity
has plateaued or is decreasing (Fig. 2c). By contrast, climate
changes are accelerating change toward fecund size classes in
the East.

The finding that fecundity can decline in large trees, with
biogeographic consequences, does not diminish their contribu-
tion to biological diversity through microhabitats for wildlife61.
Selective removals that promote uneven-aged structures can
preserve microhabitats and promote canopy heterogeneity and
light penetration that stimulates growth and fecundity35. Growth
is not currently making a strong contribution to average trends in
the West; however, management priorities can be guided by
disaggregating these mean trends to understand their distribution
across species at risk and/or valued for their ecosystem services.

The determination that indirect effects through individual
condition can dominate biogeographic responses has immediate
application in forestry and conservation. As an example, scientists
and managers increasingly recognize that the challenges posed by
continuing trends in climate cannot be addressed with traditional
nursery practice or silvicultural treatments62. Managing for long-
term trends (as opposed to the volatile interannual variation)
must consider both the direct effect of climate-induced changes
on growth and the indirect effects of these changes on fecundity.
This knowledge is critical because size-species structure is often
under the direct control of forest managers and conservation
planners, especially in eastern North America63, whereas climate
is not4. TA offers concrete estimates of how fast these changes are
happening now and which variables are responsible. While
climate is not controllable by managers, the opportunity to
influence indirect effects through stand structure can foster
stronger connections between conservation planning and global
change science.

Methods
Elements of TA. Identifying biogeographic trends within volatile data required
several innovations in the MASTIF model20, building from multivariate state-space
methods in previous applications41,52. Standard modeling options, such as gen-
eralized linear models and their derivatives, do not accommodate key features of
the masting processes. First, multiple data types are not independent. Maturation
status is binary with detection error, CCs are non-negative integers, also with
detection error, and STs require a transport model (dispersal) linking traps to trees,
and identification error in seed identification. Of course, a tree observed to bear
seed, now or in the past, is known to be mature now. However, failure to observe
seed does not mean that an individual is immature because there are detection
errors and failed crop years41,64.

Second, seed production is quasiperiodic within an individual (serial
dependence), quasi-synchronous between individuals (“mast years”), [and] there is
dependence on environmental variation, and massive variation within and between
trees41,53,65. Autoregressive error structures (AR(p) for p lag terms) impose a rigid
assumption of dependence that is not consistent with quasiperiodic variation that
can drift between dominant cycles within the same individual over time43. It does
not allow for individual differences in mast periodicity.

Third, climate variables that affect fecundity operate both through interannual
anomalies over time and as [a] geographic variation. The masting literature deals
almost exclusively with the former, but our application must identify the latter: the
potentially smooth variation of climate effects across regions must be extracted
from the many individual time series, each dominated by local “noise.”

Finally, model fitting is controlled by the size classes that dominate a given site
and thus is insensitive to size classes that are poorly represented. Large trees are
relatively rare in eastern forests, making it hard to identify potential declines in
large, old individuals41,53. Conversely, the shade-intolerant species that dominate
second-growth forests often lack the smaller size classes needed to estimate
maturation and early stages where fecundity may be increasing rapidly.

Several of the foregoing challenges are resolved in the MASTIF model by
introducing latent states for individual maturation status and tree-year seed
production. The dependent data types (maturation status, CCs, STs) become
conditionally independent in the hierarchical MASTIF model (e.g., ref. 66). The
serial dependence is handled as a conditional hidden Markov process for
maturation that combines with CCs and STs by way of stochastic (latent)
conditional fecundity. Maturation status and conditional fecundity must be
estimated jointly, that is, not with separate models. The latent maturation/fecundity
treatment avoids imposing a specific AR(p) structure. In the MASTIF model there
is a posterior covariance in maturation/fecundity across all tree-year estimates that
need not adhere to any specific assumption20. The dependence across individuals
and years is automatic and available from the posterior distribution.

Separating the spatial from temporal components of climate effects is possible
here, not only because the entire network is analyzed together but also because
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predictors in the model include both climate norms for the individual sites and
interannual anomalies across sites35,52. TA depends on both of these components.

Extracting the trends from volatile data further benefits from random individual
effects for each tree and the combination of climate anomalies and year effects over
time. A substantial literature focuses on specific combinations of climate variables
that best explain year-to-year fecundity variation, including combinations of
temperature, moisture, and water balance during specific seasons over current and
previous years19,25,41. Results vary for each study, presumably due to the
differences in sites, species, size classes, duration, data type, and modeling
assumptions. For TA, the goal is to accommodate the local interannual variation to
optimize identification of trends in space and time. Thus, we include a small
selection of important climate anomalies (spring minimum T of the current year,
summer T of the current and previous year, and moisture D of the current and
previous year). The climate anomalies considered here do not include every
variable combination that could be important for all size classes of every species on
every site. For this reason, we combine climate anomalies with year effects. Year
effects in the model are fixed effects within an ecoregion and random between
ecoregions (ecoregions are shown in Fig. 2 and listed in Supplementary Data 2).
They are fixed within an ecoregion because they are not interpreted as
exchangeable and drawn at random from a large population of possible years. They
are random between ecoregions due to the uneven distribution of sites
(Supplementary Data 1)20.

To optimize inference on size effects, the sampling of coefficients in posterior
simulation is implemented as a weighted regression. This means that the
contribution of tree diameter to fecundity is inversely proportional to the
abundance of that size class in the data. This approach has the effect of balancing
the contributions of abundant and rare sizes. Identifying size effects further benefits
from the introduction of opportunistic field sampling, which can target the large
individuals that are typically absent from field study plots.

MASTIF data network. Data included in the analysis come from published and
unpublished sources and offer one or both of the two data types, CCs and STs
(Supplementary Data 1). Both data types inform tree-year fecundity; they are
plotted by year in Fig. 6.

CCs in the MASTIF network are obtained by one of three methods. Most
common are counts with binoculars that are recorded with an estimate of the
fraction of the crop that was observed. A second CC method makes use of seeds
collected per ground surface area relative to the crown area. This method is used
where conspecific crowns are isolated and wind dispersal is limited. The crop
fraction is the ratio of ground area for traps relative to the projected crown area.
Examples include HNHR67 and BCEF68.

A third CC method is based on evidence for past cone production that is
preserved on trees. This has been used for Abies balsamea at western Quebec
sites69, Pinus ponderosa in the Rocky Mountains70, and for Pinus edulis at SW
sites27.

ST data include observations on individual trees that combine with seed counts
from traps. Because individual studies can report different subcategories of seeds,
and few conduct rigorous tests of viability, we had to combine them using the
closest description to the concept of “viable”. For example, we do not include
empty conifer seeds. A dispersion model provides estimates of seeds derived from
each tree. ST and CC studies are listed in Supplementary Data 1. The likelihoods
for CCs and STs are detailed in ref. 20. Individually and in combination, the two
data types provide estimates, with full uncertainty, for fecundity across all tree-
years.

Fitted species had multiple years of observations from multiple sites, which
included 211,146 trees and 2,566,594 tree-years from 123 species. Sites are shown
in Fig. 2 of the main text by ecoregion, they are named in Fig. 1 and summarized in
Supplementary Data 1. For TA the fits were applied to 7,723,671 trees on inventory
plots. Mean estimates for the genus were used for inventory trees belonging to
species for which there were not confident fits in the MASTIF model, which
amounted to 7.2% of inventory trees. Detailed site information is available at the
website MASTIF.

Covariates. Covariates in the model include as main effects tree diameter, tree
canopy class (shading), and the climate variables in Fig. 1 of the main text and
described in Table 1. A quadratic diameter term in the MASTIF model allows for
changes in diameter response with size52. Shade classes follow the USDA Forest
Inventory and Analysis (FIA)/National Ecological Observation Network (NEON)
scheme that ranges from a fully exposed canopy that does not interact with
canopies of other trees to fully shaded in the understory. Shading provides infor-
mation on competition that has proved highly significant for fecundity in previous
analyses41,52.

To distinguish between the effects of spatial variation versus interannual
variability, spring T and moisture D are included in the model as site means and
site anomalies35. Spring minimum T affect phenology and frost risk during
flowering and early fruit initiation. Summer mean T (June–August) is included
both as a linear and quadratic term. Mean summer T is linked to thermal energy
availability during the growing season, with the quadratic term allowing for
potential suppression due to extreme heat. Moisture D (cumulative monthly PET-P
(potential evapotranspiration[-] minus precipitation) for January–August) is
included as a site mean and an annual anomaly. Moisture D is important for
carbon assimilation and fruit development during summer in the eastern continent
and, additionally, from the preceding winter in the western continent. For species
that develop over spring and summer, anomalies incorporate the current and
previous year. We did not include longer lags in covariates. For species that
disperse seed in spring (Ulmus spp. and some members of Acer), only the previous
year was used. Temperature anomalies were included for spring, but not summer,
simply to reduce the number of times that temperature variables enter the model,
and these two variables tended to be correlated at many sites.

Climate covariates were derived from gridded climate products and combined
with local climate monitoring where it is available. Terraclimate71 provides
monthly resolution, but it is spatially coarse. For both norms and trends, we used
the period from 1990 to 2019 because global temperatures have been increasing
consistently since the 1980s, and this span broadly overlaps with fecundity data
(Fig. 6). CHELSA72 data are downscaled to a 1 km grid, but it does not extend to
2019. Our three-component climate scaling used regression to project CHELSA
forward using Terraclimate, followed by downscaling to 1 km with CHELSA, with
further downscaling to local climate data. Even where local climate data exist, they
often do not span the full duration of field studies, making the link to gridded
climate data important. Local climate data were especially important for
mountainous sites in the Appalachians, Rockies, Sierra Nevada, and Cascades.

Of the full list of variables, a subset was retained, depending on species (some
have narrow geographic ranges) and deviance information criteria of the fitted
model (Supplementary Data 2). Year effects in the model allow for the interannual
variation that is not absorbed by anomalies20.

Model fitting and TA. As mentioned above, model fitting applied the hierarchical
Bayes model of ref. 20 to the combination of time series and opportunistic
observations summarized in Fig. 1. Posterior simulation was completed with
Markov chain Monte Carlo based on direct sampling, Metropolis, and Hamiltonian
Markov chain. Model fitting used 211,146 trees and 2,566,594 tree-years from
123 species (Supplementary Data 2). Only species with multiple observation years
were included.

The climate variable referenced as C in Eq. (1) of the main text is, in fact, a
vector of climate variables described in the previous section, spring minimum T,
summer mean T, and moisture D (Table 1). The anomalies and year effects in the

Fig. 6 Distribution of observation trees by year in the North American
region of the MASTIF network. Sites are listed by ecoregion in the
Supplementary Data 2.

Table 1 Predictors in the model, not all of which are
important for all species.

Predictors Symbol Dimensions Definitions

Diameter Gij,t cm
G2
ij;t cm2 G squared

Shade Sij,t Ordinal 1–5 FIA/NEON classes
D Dj cm-mo

P8
m¼1ðPjm;t�PETjm;tÞ

D anomaly Dj,t cm-mo Anomaly for site
Spring min T Tsp,j °C Mean minimum daily spring

T Feb–Mar
Spring min T
anomaly

Tsp,j,t °C Anomaly for site

Summer T Tj °C Mean June–August
Summer T,
quadratic

T2
j °C2 Summer T squared

D:G DjGij,t cm-mo × cm D:G interaction

Subscripts reference tree i and site j in month m of year t. “sp” refers to spring.
Symbols are diameter G, temperature T, and moisture deficit D.
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fitted model contribute to the trends not explained by biogeographic variation as γ
in Eq. (1). For main effects in the model, the partial derivatives are fitted
coefficients, an example being the response to spring minimum temperature
∂f =∂Tsp ¼ βTsp

. For predictors involved in interactions, the partial derivatives are

combinations of fitted coefficients and variables. For example, the response to
moisture D, which interacts with tree size, is ∂½F� f =∂D ¼ βD þ βGDG. The
response to diameter G, which is quadratic and interacts with D, is ∂f =∂G ¼
βG þ 2βG2Gþ βGDD.

Trend decomposition applied the fitted model to every tree in forest inventories
from the USDA FIA program, the Canada’s National Forest Inventory, the NEON,
and our MASTIF collaboration. Each tree in these inventories has a species and
diameter. For trees that lack a canopy class, regression was used to predict it from
distances and tree diameters based on inventories that include both location and
canopy class, including NEON, FIA, and the MASTIF network. Although
inventories differ in the minimum diameter they record, few trees are reproductive
at diameters below the lower diameter limits in these surveys, so the effect on
fecundity estimates is negligible. For the indirect effects of climate coming through
tree growth rates, the same covariates were fitted to growth as previously defined
for fecundity, using the change in diameter observed over multiple inventories. A
Tobit model was used to accommodate the fact that a second measurement can be
smaller than an earlier measurement. The Tobit thus treats negative growth as
censored at zero. TA to inventory plots used 7,717,677 trees. Because not all species
in the inventory data are included in the MASTIF network, mean fecundity
parameters for the genus were used for unfitted species. Species fitted in the
MASTIF network accounted for >90% of trees in inventory plots (Supplementary
Data 2).

From the predictive distributions for every tree in the inventory data, we
evaluated predictive mean trends aggregated to species and plot in Fig. 2b. We
extracted specific terms that comprise the components in Fig. 4 and aggregated
them too to the plot averages.

General form for TA. Equation 1 simplifies the model to highlight direct and
indirect effects. Again, climate variables and tree size represent only a subset of the
predictors in the model that are collected in a design vector xt ¼ ½x1;t ; ¼ ; xQ;t �0 ,
where the q= 1,…,Q predictors include shading from local competition, indivi-
dual size, and climate and habitat variables (Table 1). On the proportionate scale,
Eq. (1) can be written in terms of all predictors, including main effects and
interactions, as

df
dt

¼
XQ
q¼1

∂f
∂xq

þ
X
q02Iq

∂f
∂ðxqxq0 Þ

xq0

0
@

1
A dxq

dt
þ γ ð2Þ

where Iq are variables that interact with xq. In this application, interactions include
tree diameter with moisture deficit and diameter squared. Each term in the sum-
mation consists of a main effect of xq and interactions that are multiplied by the
rate of change in variable xq. For the simple case of only two predictors, Eq. (2) is
recognizable as Eq. (1) of the main text, where x1, x2 have been substituted for
variables G and C. In our application, predictors include additional climate and
shading (Table 1).

Recognizing that environmental variables affect not only fecundity but also
growth rate, we extract the size effect, that is, the xq that is G, and incorporate these
indirect effects (through growth) by expanding g= dG/dt in Eq. (1) of the main
text as

g ¼
XQ
q¼1

∂g
∂xq

þ
X
q02Iq

∂g
∂ðxqxq0 Þ

xq0

0
@

1
Axq þ ν ð3Þ

where ν is the component of growth that is not accommodated by other terms. This
expression allows us to evaluate the full effect of climate variables, including those
coming indirectly through growth.

Connecting fitted coefficients in MASTIF to TA. This section connects the
continuous, deterministic Eq. (1) to the MASTIF model20 with the interpretation of
responses, direct effects, and full effects of Fig. 5. To summarize key elements of the
fitted model20, consider a tree i at site j that grows to reproductive maturity and
then produces seed depending on its size, local competitive environment, and
climate. We wish to estimate the effects of its changing environment and condition
on fecundity using a model that includes spatial variation in predictors that are
tracked longitudinally over years t. Fecundity changes through maturation prob-
ability ρij(t), which increases as trees increase in size, and through conditional
fecundity ψij(t), the annual seed production of a mature tree. Let zij(t)= 1 be the
event that a randomly selected tree i is mature in year t. Then, ρij(t) is the cor-
responding probability that the tree is mature, E[zij(t)]= ρij(t)(ρ is not to be
confused with the probability that a tree that is now immature will make the
transition to the mature state in an interval dt= 1. That is a different quantity
detailed in the Supplement to ref. 41). Fecundity has expected value Fij(t)= ρij(t)
ψij(t). On a proportionate (log) scale,

f ijðtÞ ¼ log FijðtÞ ¼ log ρijðtÞ þ logψitðtÞ ð4Þ

The corresponding rate equation is

df
dt

¼ d log ρ
dt

þ d logψ
dt

ð5Þ

The discretized and stochasticized version of Eq. (1) is

dFij

dt
¼ Fij;tþdt � Fij;t

dt
þ ϵij;t

¼ ΔFij;t þ ϵij;t

ð6Þ

where dt= 1 and ϵij,t is the integration error. When applied to a dynamic process
model, this term further absorbs process error (see above), which is critical here to
allow for conditional independence where observations are serially dependent. In
simplest terms, ϵ is model miss-specification that allows for dependence in data.

The MASTIF model that provides estimates for TA is detailed in ref. 20.
Elements of central interest for TA are

Fij;t ¼ zij;tψij;t

zij;t ¼ 1
h i

� Bernoulli ρij;t

� �
ρij;t ¼ Φðμij;tÞ

logψij;t ¼ x0ij;tβþ ht Tð Þ þ ϵij;t

where μij,t= α0+ αGGij,t describes the increase in maturation probability with size,
Φ(⋅) is the standard normal distribution function (a probit), ϵij,t ~N(0, σ2), and
ht(T) can include year effects, h(T)= κt, or lagged effects, hðTÞ ¼Pp

k¼1 κkψij;t�k ,
that contribute to γ in Eq. (1) of the main text. If year effects are used, then γ
includes the trend in year effects. (The generative version of this model writes
individual states at t conditional on t− 1 and is given in the Supplement to ref. 20.).
If an AR(p) model is used, then γ= κ1 (provided data are not detrended). Random
individual effects in the fitted model are marginalized for prediction of trees that
were not fitted, meaning that σ2 is the sum of model residual and random-effects
variance. Again, the length-Q design vector xij,t includes individual attributes (e.g.,
diameter Gij,t), local competitive environment, and climate (Table 1). There is a
corresponding coefficient vector β.

Moving to a difference equation (rate of change) for conditional log fecundity,

Δf ij;t ¼ Δlog ρij;t þ Δlogψij;t

where

Δlogψij;t ¼ logψij;tþ1 � logψij;t

¼ Δx0ij;tβþ γij;t þ νij;t

Δxij;t ¼ xi;t � xij;t�1

νij;t � Nð0; 2σ2Þ
The variance in the last line is the variance of the difference Δϵij,t.

Elements of basic theory in Eq. (1) of the main text are linked to data through
the modeling framework as

Δf ij;t ¼þ βTsp
ΔTsp;j

þ βT þ 2βT2Tj

� �
ΔTj

þ βD þ βGDGij;t

� �
ΔDj

þ αG
ϕðμij;tÞ
Φðμij;tÞ

þ βG þ 2βG2Gij;t þ βGDDj

 !
ΔGij

þ γij;t þ νij;t

ð7Þ

where ϕ(⋅) is the standard normal density function that comes from the rate of
progress toward maturation. Again, the anomalies do not appear in this expression
for trends because trends in the anomalies and year effects enter through γ.

The first four lines in Eq. (7) are, respectively, the effects of trends in spring
minimum temperatures ΔTsp,j, summer mean temperature ΔTj, moisture deficit
ΔDj, and size ΔGij, where the latter comes from growth on inventory plots. The
contribution of maturation to change in fecundity is the first term in the fourth
line, αGϕ(μij,t)/Φ(μij,t). A map of this term in Fig. 7b shows the strong contribution
to fecundity in the East due to the young (Fig. 7a) and/or small (Fig. 4b) trees there.
The sum of these terms dominates the patterns in Fig. 3c.

All terms in Eq. (7) have units of mean change in proportionate fecundity, and
these are mapped in figures of the main text. We focus on proportionate fecundity
because it reflects the full effect of climate as opposed to total fecundity, which
would often be dominated by one or a few trees of a single species. However, from
proportionate fecundity we can obtain change in fecundity as ΔFij,t= Fij,t × Δfij.
Stand-level effects on fecundity change at site j can be obtained from individual
change as

ΔFj ¼
Xnj
i¼1

ΔFij ¼
Xnj
i¼1

FijΔf ij;t

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20836-3

8 NATURE COMMUNICATIONS | (2021)12:1242 | https://doi.org/10.1038/s41467-020-20836-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Again, maps in Fig. 5 show mean proportionate effects for all trees on an
inventory plot.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data from the study are available at the Duke Data Repository (Dataset) [https://doi.org/
10.7924/r4348ph5t].

Code availability
Code in R and C++ is available on CRAN as mastif version 1.0.1 [https://cran.r-project.
org/web/packages/mastif/index.html], with additional background here.
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