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1 Start from here

What do you need? Minimal background includes some experience with R and basic stats.
In addition we’ll need the following:

• Bring a laptop with R installed.
• NEON.rdata, bayesReg.R
• gjam2.0 package loaded from CRAN for R studio

If you have time, browse the vignettes and examples on help pages before the workshop.
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Figure 1: Sampling effort for species groups examined in the NEON examples that follow.

2 Uncertainty in network data

GJAM was motivated by the challenges of modeling distribution and abundance of multi-
ple species, so-called joint species distribution models (JSDMs), where species and other
attributes are recorded on different scales. Because species are not independent, they must
be modeled together. But how does one combine species recorded on different scales? Data
may be continuous, discrete, censored, composition, nominal, and ordinal–combinations of
observations are not described by standard distributions. Equally challenging is the fact that
most of the values in species-abundance data sets are typically zero. Finally, application of
non-linear link functions as used in GLMs make it hard to interpret estimates from a model.
Generalized joint attribute modeling (GJAM) provides a common framework for synthesis of
ecological attribute and abundance data, both for estimating responses to the environmental
and for prediction. I introduce the basic ideas needed for Bayesian analysis, followed by
examples showing how GJAM is used integrate biodiversity data from networks.

I begin with the concept of hierarchical modeling and why it resides comfortably within the
Bayesian paradigm. Uncertainty in parameters, process, and data can all be integrated in a
common framework.

I then discuss GJAM for multivariate responses that can be combinations of discrete and
continuous variables, where interpretation is needed on the observation scale. To allow
transparent interpretation gjam avoids non-linear link functions.

The integration of discrete and continuous data on the observed scales makes use of censoring.
Censoring extends a model for continuous variables across censored intervals. Continuous
observations are uncensored. Discrete observations are censored versions of discrete data.
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Censoring is used with the effort for an observation to combine continuous and discrete
variables with appropriate weight. In count data, effort is determined by the size of the
sample plot, search time, or both. It is comparable to the offset in generalized linear models
(GLM). In count composition data, e.g. microbiome data, effort is the total count taken
over all species. In paleoecological data it is the count for the sample. In gjam discrete
observations can be viewed as censored versions of an underlying continuous space.

In the next section I use a simple variation on linear regression to illustrate the basic concept
of censoring, thus allowing for zeros in continuouos data. I follow with examples showing
application of gjam to network data.

3 Background Bayes

Hierarchical models are used to combine observations with processes and parameters. They
exploit the Bayesian paradigm. Hierarchical models don’t have to be Bayesian, but they
usually are. I introduce these concepts together.

The basic building blocks are likelihood and prior distribution. Hierarchical models organize
these pieces into graphs having several levels. These are the knowns (data and priors) and
the unknowns (latent processes and parameter values). It is natural to think of inference this
way:

[unknowns | knowns] = [process, parameters | data, priors]

If notation is unfamiliar: [A] is the probability or density of event A, [A,B] is the joint
probability of A and B, and [A|B] is the conditional probability of A given B.

This structure comes naturally to a Bayesian. It can be unwieldy for non-Bayesian methods.
A hierarchical model typically breaks this down as

[process, parameters | data, priors] ∝

[data | process, parameters][process | parameters][parameters | priors]

The left hand side is the joint distribution of unknowns to be estimated, called the posterior
distribution. This structure is amenable to simulation, using Markov Chain Monte Carlo
(MCMC). Gibbs sampling is a common MCMC technique, because the posterior can be
factored into smaller pieces that can be dealt with one at a time, as simpler conditional
distributions. I begin with examples involving regression.

3.1 Traditional regression

For an example, load some NEON data,
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library(gjam)
load('NEON.rdata')
ls()

## [1] "elist" "formula" "modelList" "rlist" "type" "typeNames"
## [7] "xdata" "ydata"

I’ll say more about the objects here later. For now I use this example to illustrate combinations
of discrete and continuous data for a univariate case.

A regression model looks like this:

yi ∼ N(µi, σ
2)

µi = β0 + β1x1,i + · · ·+ βp+1xp+1,i

The normal distribution on the right-hand side is called a likelihood. It is called a linear
model, because it is a linear function of the parameters β.

Here is a linear regression fitted to the abundance of the first plant species using the standard
function lm in R. In the formula I have specified a model containing main effects and
interactions involving temperature and precipitation (temp*pred) and a factor variable
soil type. I tell lm that the variables are to be found as columns in the data.frame data.
pindex <- which(type == 'p') # plant columns
plants <- as.matrix(ydata[,pindex]) # the first plant species
p1 <- plants[,1]
data <- cbind(p1,xdata) # put p1 in the data.frame
fitLM <- lm( p1 ~ temp*prec + soil, data ) # linear regression
summary(fitLM)

##
## Call:
## lm(formula = p1 ~ temp * prec + soil, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.96650 -0.18195 -0.08270 -0.00318 1.85818
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.074e-01 2.230e-01 -0.930 0.3543
## temp -8.433e-02 3.709e-02 -2.274 0.0248 *
## prec 4.476e-04 2.258e-04 1.982 0.0498 *
## soilInceptisols 5.221e-01 2.005e-01 2.604 0.0104 *
## soilMollisols -5.322e-01 2.211e-01 -2.408 0.0176 *
## soilOthers -2.777e-02 2.065e-01 -0.134 0.8933
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## soilSpodHist 2.033e-01 1.885e-01 1.078 0.2830
## soilUltisols -4.864e-02 2.023e-01 -0.240 0.8104
## temp:prec 4.649e-05 3.182e-05 1.461 0.1466
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5421 on 119 degrees of freedom
## (37 observations deleted due to missingness)
## Multiple R-squared: 0.3745, Adjusted R-squared: 0.3325
## F-statistic: 8.907 on 8 and 119 DF, p-value: 1.657e-09

The formula p1 ~ temp*prec + soil indicates that p1 is the response variable, predicted
by main effects and the interaction between temp and prec and the factor soil type.
This summary says that main effects of temp and prec are significant. Two soil types are
significantly different from the ‘reference’ soil type for this analysis, which happens to be
Entisols.

3.2 What about the zeros?

The problem with this analysis is that regression does not allow zeros. Most of the observed
values are zero:
hist(p1,nclass=100)
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Figure 2: Plant cover values are mostly zero

This is not just a minor problem. If there were a few zeros, with most values bounded away
from zero I might argue that it’s close enough. That’s not the case here.

If these were discrete data, I might turn to a zero-inflated Poisson or negative binomial model.
In fact, these models sometimes work ok, provided there are not too many zeros, but here
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zeros dominate. Regardless, these are not discrete data, so I cannot use either.

I cannot add a small amount to each observation and then transform the data to a log scale.
If I do that, every coefficient I estimate depends the arbitrary value I used.

3.3 Tobit regression

Censoring provides an attractive alternative. It allows me to combine continuous and censored
data without changing the scale. In a Tobit model the censored value is zero, but it also
works with other values. I introduce a latent variable W that is equal to the response Y
whenever Y > 0. When Y = 0, then the latent variable is negative.

yi =
{
wi, wi > 0
0, wi ≤ 0

With this model the regression moves to the latent W ,

wi ∼ N(µi, σ
2)× [β, σ2]

The second factor is the prior distribution, which, again, I’ve taken to be non-informative.
Note that I now have wi, not yi, on the left-hand side. I have included the Tobit model as an
option for a Bayesian regression in the file bayesReg.R. To make the code as transparent as
possible I have simply assumed a non-informative prior distribution of the coefficients β, σ.

First, to convince myself that a non-informative prior should give about the same answer
as the tradition model fitted with lm I fit bayesReg.R without the Tobit option. In other
words, like with the previous fit using lm, I am again ignoring the fact that the likelihood
does not allow zeros:
source('bayesReg.R')
fitBayes <- bayesReg(p1 ~ temp*prec + soil, data, TOBIT=F)
fitBayes$beta

## median 0.025 0.975
## intercept -0.2192000 -6.589e-01 0.2579000
## temp -0.0835300 -1.602e-01 -0.0079960
## prec 0.0004537 -1.992e-05 0.0009129
## soilInceptisols 0.5197000 1.303e-01 0.9145000
## soilMollisols -0.5222000 -9.923e-01 -0.0968400
## soilOthers -0.0224900 -4.416e-01 0.3828000
## soilSpodHist 0.1973000 -1.711e-01 0.5898000
## soilUltisols -0.0463800 -4.481e-01 0.3524000
## temp:prec 0.0000462 -1.893e-05 0.0001107
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I choose to organize my output a bit differently from lm, mine reporting 95% credible intervals,
rather than standard errors. However, I see that point estimates for coefficients are nearly the
same as I obtained with lm. I also see that the coefficients having credible intervals that do
not span zero in the Bayesian analysis are the same coefficients that lm flagged as ‘signficant’.
(They need not be the same). More importantly, given the assumption there there is not
point mass at zero the traditional and Bayesian methods tell a similar story.

Now allowing for the zeros in Y , the fitted coefficients differ substantially from both previous
models:
fitTobit <- bayesReg(p1 ~ temp*prec + soil, data, TOBIT=T)

## fitted as Tobit model
fitTobit$beta

## median 0.025 0.975
## intercept -6.789e+00 -1.026e+01 -4.192000
## temp -1.282e+00 -1.990e+00 -0.816200
## prec 7.807e-03 4.845e-03 0.012340
## soilInceptisols -2.867e+00 -6.135e+00 -0.479500
## soilMollisols -1.908e+01 -2.948e+01 -8.615000
## soilOthers -7.454e+00 -2.813e+01 0.471400
## soilSpodHist -5.181e+00 -9.481e+00 -2.095000
## soilUltisols -2.286e+00 -4.142e+00 -0.746500
## temp:prec 7.708e-04 4.641e-04 0.001207

More coefficients are ‘different’ than zero, i.e., ones for which lower and upper bounds have
the same sign. Moreover, root mean square prediction errors (rmspe) have also declined from
0.514 in the regression to 0.454 for the Tobit. And some that the traditional analysis flag as
‘significant’ have opposing sign with the Tobit model (inceptisols). Finally, with the Tobit
model, the interaction temp*prec posterior does not include zero.

In summary, not only is the Tobit defensible as a valid model for continuous data with zeros–it
also finds more effects and better predicts data than the traditional regression. gjam makes
use of censoring to accommodate the many combinations of data types, in a multivariate
setting.

4 gjam model summary

The basic model for combining data from many species together is outlined in a series of
vignettes for the R package gjam.
browseVignettes('gjam')

To summarize, an observation consists of environmental variables and species attributes,
{xi,yi}, i = 1, ..., n. The vector xi contains predictors xiq : q = 1, ..., Q. The vector yi
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Figure 3: Ground beetles are collected in NEON pitfall traps, mostly predatory, many
flightless. This species, now well-established in the eastern US, was introduced to slow the
spread of gypsy moth (from Evans, Beetles of Eastern North America).

contains attributes (responses), such as species abundance, presence-absence, and so forth,
yis : s = 1, ..., S. The effort Eis invested to obtain the observation of response s at location i
can affect the observation. The vignettes mentioned above provide many examples with real
and simulated data. Here I show application to NEON data.

4.1 NEON ground beetles, mammals, plants

The NEON data used for this tutorial come from pitfall traps for ground beetles, 1-m2 plots
for plants, and traps for small mammals. The plant data are continuous (cover abundance)
with point mass at zero. The other data types are counts. Each has a different level of effort,
including numbers of traps, length of time trapping and plot area. The relative effect devoted
to samping is shown in Figure 1.

The objects I loaded from the file NEON.rdata are R objects of this type:

object type comment
xdata data.frame explanatory variables
ydata data.frame species abundance
typeNames character vector data types
elist list sample effort
modelList list specify model, data
rlist list dimension reduction

If storage.mode for R objects is unfamiliar to you, it’s worth skimming the help files.

As before, I can think about the data as consisting of predictors X and responses Y . The
difference now is that the response is not only multivariate, but also on different scales. The
predictors, along with some additional useful information about plots, are contained in a
data.frame xdata. Here are a few rows,
xdata[1:3,]

## lon lat elev soil u1 u2 u3
## BART_001 -71.30879 44.04690 501 SpodHist 0.1750308 0.10273741 0.1417068
## BART_002 -71.27493 44.03626 508 SpodHist 0.1844606 0.03265244 -0.1815476
## BART_005 -71.29750 44.05400 344 SpodHist 0.1811391 0.11999386 0.1356940
## temp prec therm def nlcd
## BART_001 -7.343833 1427.949 778.2648 402.2729 deciduousForest
## BART_002 -7.343833 1427.949 778.2256 402.2454 mixedForest
## BART_005 -7.343833 1427.949 778.2909 402.2913 other

I have assigned the same rownames to both xdata and ydata, a character vector with the
stucture site_plot. I have assigned colnames to identify species in ydata and the predictors
in xdata. Note that the data.frame xdata includes columns with numbers and words. The
columns soil and nlcd are factors. Others are continuous predictors.
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The data.frame ydata holds species abundance data as plots × species. The columns in
ydata are species. They are of three types indexed by a character vector type,
type

## [1] "c" "c" "c" "c" "c" "c" "c" "c" "c" "c" "c" "c" "c" "c" "c" "c" "c"
## [18] "c" "c" "c" "c" "c" "c" "c" "c" "c" "c" "p" "p" "p" "p" "p" "p" "p"
## [35] "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p"
## [52] "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p"
## [69] "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p"
## [86] "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "p" "m" "m" "m" "m"
## [103] "m" "m" "m" "m" "m" "m" "m" "m" "m" "m" "m" "m" "m" "m" "m"

There is one value in type for each column in ydata. The first set of columns, labeled "c",
refers to carabids (ground beetles). Then come columns for plants (type == "p"). Finally,
there are mammal columns ("m"). Here are the numbers for each species group,
table(type)

## type
## c m p
## 27 19 71

Type "c" and "m" are counts (numbers in pitfall and mammal traps, respectively). Note
that these columns have only integer values. Type "p" are continuous. These types are
recorded in the character vector typeNames as disrete abundance ("DA") and continuous
abundance ("CA"),
typeNames

## [1] "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA"
## [15] "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "CA"
## [29] "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA"
## [43] "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA"
## [57] "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA"
## [71] "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA"
## [85] "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA" "CA"
## [99] "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA" "DA"
## [113] "DA" "DA" "DA" "DA" "DA"

Collection of these different data types required different amounts of effort. The object
elist is a list containing the column numbers that hold effort information, the vector
elist$columns and a n× S matrix elist$values containing the amount of effort per plot
and species group. These values can be plot-days, plot area, and so on. I could create elist
like this: elist <- list(columns = 1:S, values = effort).
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Figure 4: Examples of fitted coefficients. Using the vectors boxCol and boxBorder passed
to gjamPlot in plotPars to specify colors for species groups I have highlighted carabids in
blue, plants in green, and mammals in brown. See the help page for gjamPlot and gjam
vignettes.
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4.2 Dimension reduction

The sizes of objects discussed in the previous section are
dim(xdata)

## [1] 165 12
dim(elist$values)

## [1] 165 117
dim(ydata)

## [1] 165 117

All of these objects have the same number of rows (plots). elist$values and ydata have the
same number of columns, the number of species. xdata has a different number of columns,
including both predictors and other information about plots. There are already some clear
challenges here. We have nearly as many species to fit (S = 117) as we have samples (n =
165). Suppose the number of predictors in the model is Q. The model we fit will have a
Q × S matrix of coefficients B and a S × S covariance matrix Σ matrix. The latter has
S(S + 1)/2 unique coefficients to estimate. Thus, for our S = 117 species a model with 5
predictors requires QS + S(S + 1)/2 = 7488 estimates.

Large covariance matrices are a problem, because they have to be inverted. An S × S
covariance matrix requires order S3 operations. The size of the problem has to be reduced.

The high dimensionality is addressed with dimension reduction, methods for finding a lower
dimensional representation of the covariance matrix. The idea here is to summarize the
S × S matrix Σ with a much smaller N × r matrix. A dimension reduction method has been
developed for gjam. Here I specify a much reduced version of Σ in a list containing these two
values:
rlist

4.3 Fitting the model

I place the elements of the model into modelList,
modelList <- list(ng=500, burnin=50, typeNames = typeNames,

effort = elist, reductList = rlist)

In modelList I provide the number of Gibbs steps ng, the number of iterations to discard
burnin, the dimension reduction values reductList, and variable names in xdata that should
not be standardized notStandard. Any predictors that are not factors and not included in
notStandard are standardized. However, all coefficients are returned on their original scales.
In other words, the coefficients in matrix B have the expected dimension of Y/X.
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Figure 5: Sensitivity coefficients integrate the effects of predictors across all responses (species)
in the model.
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I fit the model using the function gjamGibbs standard R syntax for formula,
out1 <- gjamGibbs(~ temp + def + soil + nlcd, xdata = xdata, ydata, modelList)

I can plot the output here:
S <- length(typeNames)
specColor <- rep('brown', S)
specColor[type == 'p'] <- 'darkgreen'
specColor[type == 'c'] <- 'blue'
plotPars <- list(GRIDPLOTS=T, CLUSTERPLOTS=T, SMALLPLOTS=F, SAVEPLOTS=F,

specColor = specColor)
fit <- gjamPlot(out1, plotPars)

The options for plots is illustrated with vignettes at http://sites.nicholas.duke.edu/clarklab/
code/.
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Figure 6: Predictive capacity of the model by species group (a - c) and for species richness
(d).
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4.4 NEON values are censored

I included Figure 2 without commenting on something that seemed odd to me; beyond all
the zeros–there is also point mass at 0.5. We then learned from NEON that values of greater
than zero but less than 0.5% cover are assigned 0.5. Examples of this type of censoring
implemented to speed data collection are common in ecological data. In many cases I might
simply ignore this as a minor detail. I worried about it here, because 0.5 is the second most
common value in zero dominated data. In other words, the value 0.5 dominates the non-zero
observations. It would be remarkable if piling most of the observations on this one value had
no impact on inference. Fortunately, gjam readily accommodates censoring (see gjamCensorY
help page), so I checked. Here is the censoring for the values at 0 and 0.5:
values <- c(0, 0.5) # censored values in data
intvls <- rbind( c(-Inf, 0), c(0, .5) ) # partition for those values
censor <- gjamCensorY(values = values, intervals = intvls,

y = ydata, whichcol = pindex)$censor
censor <- list('CA' = censor)
modelList$censor <- censor
censor

The modelList now includes the censor list, named for the data typeNames 'CA', and
including the values that indicate censoring (0, 0.5) and the intervals they represent. The
censor list is appended to the modelList. Here is the analysis again with censored data
and a few plots showing substantial effects:
out2 <- gjamGibbs(~ temp + def + soil + nlcd,

xdata = xdata, ydata, modelList = modelList)

# comparisons of censored and non-censored predictions:
wf <- which(is.finite(plants)) #only for non-missing values
par(mfrow=c(2,2),bty='n', mar=c(5,5,1,1))
plot(plants[wf],out1$modelSummary$yMu[,pindex][wf], cex=.2,

xlab='All plant species', ylab='Predicted')
points(plants[wf],out2$modelSummary$yMu[,pindex][wf], cex=.1, col=2)
abline(0,1,lty=2)
legend('topleft',c('uncensored','censored'), text.col=c(1,2),

bty='n')

plot(plants[wf],out2$modelSummary$yMu[,pindex][wf], cex=.2,
xlim=c(0,5), ylim=c(0,5), xlab='Observed',ylab='Censored prediction')

plot(out1$parameterTables$fBetaMu, out2$parameterTables$fBetaMu, cex=.2,
xlab='Uncensored estimates',ylab='Censored')

abline(0,1,lty=2)

The panel at upper left suggests that the predictions for the first model are not bad. However,
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it’s hard to see how predictions might be affected down in the range where censoring occurs.
Many species are mostly zero, like species 1 (top right), where the censored model knows to
allow predictions over continuous positive values, including the censored interval (vertical
axis). The big differences stand out in estimates of coefficients (lower right). Thus, with high
numbers of zeros, proper censoring can be critical.

4.5 Interpreting a big model

The many fitted coefficients required for a model with many species presents visualization
challenges. Here I provide some interpretation for output available from gjamPlot.

Estimates from the model are summarized in several formats. Box and whisker plots of
68% and 95% credible intervals default to include only coefficients having 95% intervals that
exclude zero (Fig. 5). These plots will be rendered to the screen or written to .pdf files
if SAVEPLOTS = T is included in plotPars. As with all plots that follow the uncertainty
integrates parameter, process model, and data.

The overall sensitivity can be evaluted with inverse prediction of input variables. In this
example the predictors having greatest impact are climate (temperature temp, deficit def,
and thermal energy therm), soil (variable names beginning with soil) and nlcd cover types
(variable names beginning with nlcd) (Fig. 6). The smallest effect in this example are
slope-aspect variables (u1, u2, u3).

The capacity to predict data is evaluated both for inputs in X and outputs in Y . The
observed vs predicted values for Y are shown in Figure 7a - c. Unlike species distribution
models (SDMs), which predict either distribution or abundance, gjam predicts both. Species
richness (Fig. 7d) can be predicted from the same model as abundance, because each species
has an explicit probability of zero.

The inverse prediction of continuous inputs in X is shown in Figure 8 and of factors in Figure
9. These confident predictions say that the community is diagnostic of the site, include
discrete factors such as soils and cover type (Fig. 9). Although specific indicator species rarely
provide good estimates of environment gjam shows that the full community is a fingerprint
for the environment. Here again, we have full uncertainty in the inverse predictions.

Commonalities in responses across species help to define communities on the basis of response,
rather than distribution or abundance. The clustering of responses in Figure 10 can help us
rethink community relationships across these diverse species groups.

In remaining figures are examples of prediction out-of-sample using gjamPredict. Note
these predictions derive from only a handfull of NEON sites (Fig. 1) and include both
presence-absence and abundance with full uncertainty.
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Figure 7: Inverse predictive capacity of the model for the inputs in the model. Inputs that
can be accurately predicted by model responses have large impact across the full community
of responses.
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Figure 8: Inverse predictive of two multi-level factors, including soil and cover types, indicate
that the community is highly diagnostic of the environment.
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Figure 9: Species similarities in their responses to environmental variables in X. Warm colors
are similar species pairs, and vice versa. Species are rows. At left species are also columns.
Clusters of warm colors indicate similar responses to X. At right is the fitted coefficient
matrix B, with columns as predictors. In this example there are not strong patterns in B
that match similar groups at right.
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Figure 10: Out-of-sample predictive distributions for the white-footed mouse, including
abundance (shaded surface), presence-absence probabilities (0.1, 0.5, in blue), and observations
at NEON sites (blue circles).
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Figure 11: Out-of-sample predictive distributions for cinnamon fern. Symbolism follows
Figure 11.
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Figure 12: Out-of-sample predictive distributions for a gastropod-feeding ground beetle.
Symbolism follows Figure 11.
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5 Other resources

help files and vignettes provide fast, simple examples for many data types

Publications available at http://sites.nicholas.duke.edu/clarklab/ include the following:

Clark, J.S. 2016. Why species tell us more about traits than traits tell us about species:
Predictive models. Ecology, in press.

Clark, J.S., D. Nemergut, B. Seyednasrollah, P. Turner, and S. Zhang. 2016. Generalized
joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious
data, Ecological Monographs, in press.

Taylor-Rodriguez, D., K. Kaufeld, E. Schliep, J. S. Clark, and A. Gelfand, 2016. Joint Species
distribution modeling: dimension reduction using Dirichlet processes, Bayesian Analysis, in
press.
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