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Scaling Integral Projection Models for
Analyzing Size Demography
Alan E. Gelfand, Souparno Ghosh and James S. Clark

Abstract. Historically, matrix projection models (MPMs) have been em-
ployed to study population dynamics with regard to size, age or structure. To
work with continuous traits, in the past decade, integral projection models
(IPMs) have been proposed. Following the path for MPMs, currently, IPMs
are handled first with a fitting stage, then with a projection stage. Model fit-
ting has, so far, been done only with individual-level transition data. These
data are used in the fitting stage to estimate the demographic functions (sur-
vival, growth, fecundity) that comprise the kernel of the IPM specification.
The estimated kernel is then iterated from an initial trait distribution to ob-
tain what is interpreted as steady state population behavior. Such projection
results in inference that does not align with observed temporal distributions.
This might be expected; a model for population level projection should be
fitted with population level transitions.

Ghosh, Gelfand and Clark [J. Agric. Biol. Environ. Stat. 17 (2012) 641–
699] offer a remedy by viewing the observed size distribution at a given
time as a point pattern over a bounded interval, driven by an operating in-
tensity. They propose a three-stage hierarchical model. At the deepest level,
demography is driven by an unknown deterministic IPM. The operating in-
tensities are allowed to vary around this deterministic specification. Further
uncertainty arises in the realization of the point pattern given the operating
intensities. Such dynamic modeling, optimized by fitting data observed over
time, is better suited to projection.

Here, we address scaling of population IPM modeling, with the objective
of moving from projection at plot level to projection at the scale of the east-
ern U.S. Such scaling is needed to capture climate effects, which operate at a
broader geographic scale, and therefore anticipated demographic response to
climate change at larger scales. We work with the Forest Inventory Analysis
(FIA) data set, the only data set currently available to enable us to attempt
such scaling. Unfortunately, this data set has more than 80% missingness;
less than 20% of the 43,396 plots are inventoried each year. We provide a hi-
erarchical modeling approach which still enables us to implement the desired
scaling at annual resolution. We illustrate our methodology with a simulation
as well as with an analysis for two tree species, one generalist, one specialist.
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1. INTRODUCTION

Population dynamics is a field with a long his-
tory in ecology and biology. Demography summarizes
traits classified as stages. Matrix population models
(MPMs), which assume stages are discrete classes, are
usually used to describe changing structure (see, e.g.,
Keyfitz and Caswell, 2005, and references therein).
Though changes in trait operate at the individual level,
analysis of changing structure requires a translation
of individual level data to the population level. In
the past decade, the integral projection model (IPM)
(Easterling, Ellner and Dixon, 2000; Ellner and Rees
2006, 2007; Rees and Ellner, 2009) has been offered as
an alternative to matrix projection models when inves-
tigating continuous traits, for example, size, age, mass,
leaf length. These models are built from demographic
functions, parametric models for demographic pro-
cesses specified in the form of vital rates like growth,
maturation, survival, birth and fecundity; these rates
are incorporated into a stationary redistribution ker-
nel. For an estimated demographic model, projection
refers to iterative projection of this kernel to steady
state in order to attempt to answer questions regard-
ing what would happen. So far, these models have only
been fitted with individual-level transition data, that is,
these data are used to estimate the demographic func-
tions that comprise the kernel of the IPM specification.
Then, projection proceeds through iteration, given the
estimated kernel.

In recent work, Ghosh, Gelfand and Clark (2012) ar-
gue that such an approach introduces an inherent mis-
match in scales. Working with tree diameters as the
trait of interest, an individual level model describes the
(conditional) transition of an individual of diameter x

at time t to diameter y at time t +1. On the other hand,
an IPM essentially takes the distribution of diameters
of individuals at time t to the distribution of diameters
of individuals at time t + 1. We have a version of the
familiar ecological fallacy (Wakefield, 2009). More-
over, in our application, we do not have any individual
level transition data to attempt to scale up. For a given
species, we only have the collection of diameters in a
given plot, in a given year.

Ghosh, Gelfand and Clark (2012) offer a remedy by
viewing the observed diameter distribution at a given
time as a point pattern over a bounded interval, driven
by an operating intensity. They propose a three-stage
hierarchical model. At the deepest level, demography
is driven by an unknown deterministic IPM. The op-
erating intensities vary around this deterministic spec-
ification. Further uncertainty arises in the realization

of the point pattern given the operating intensities.
Ghosh, Gelfand and Clark (2012) argue that such dy-
namic modeling, optimized by fitting data observed
over time, will better reveal how intensities, hence pop-
ulation structure, change over time. With individual-
level IPM model fitting, there is no mechanism to align
projected trait distributions with trait distributions ob-
served over time; consequential drift relative to the ob-
served data can occur.

The contribution of this paper is to address scaling
for population level IPMs with the objective of moving
from plot level scale to larger scales, for example, the
scale of the eastern U.S. Such scaling is intended to try
to identify climate effects, which operate at a broader
geographic scale, on demography. In turn, such scal-
ing could allow assessment of changes in trait distri-
butions and abundance, in response to climate change
at larger scales. The threat of climate change is typi-
cally evaluated in terms of changes in distribution and
abundance at regional scales (e.g., Guisan and Rah-
beck, 2011). Our point pattern approach is attractive for
scaling since we can cumulate intensities to explain ag-
gregated point patterns. Individual level models cannot
offer the desired scaling. Aggregation has to be done
in climate space since the IPM kernels have arguments
over trait space, not in geographic space, but introduce
climate as covariates.

A further, critical contribution is an approach to han-
dle severe sparsity in data collection. This emerges as
a key feature with the USDA Forest Service’s Forest
Inventory and Analysis (FIA) data, which motivates
our scaling objective. The FIA data is one of the few
available data sets to investigate such scaling. Unfor-
tunately, this database has enormous missingness. Of
the roughly 44,000 plots, less than 20% are inventoried
each year; more than 80% of plot level data over the
time period 2000–2010 is missing. During this period
a plot will have been inventoried two, possibly three
times. Moreover, we have even more sparse sampling
prior to 2004. Our study region includes the 31 east-
ern US states with climate conditions varying from hot
and moist near the Gulf of Mexico to cold and dry near
the Great Lakes. We focus on two illustrative species:
Acer rubrum (ACRU) is a generalist and occupies a
wide range of climate conditions. Liriodendron tulip-
ifera (LITU) is restricted to the hot moist climate of
the eastern and southeastern United States. Only in the
recent work of Ghosh, Gelfand and Clark (2012) have
IPM models been considered at the population scale.
We are unaware of any applications at large geographic
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scales or in the absence of data for consecutive time pe-
riods.

The format of the paper is as follows. In Section 2
we review IPMs and their properties as well as how we
introduce uncertainty into the deterministic IPM spec-
ification. We also clarify the associated model fitting
challenge, offering an approximation. To expedite flow
and clarify the contribution here, explicit details of the
model specification, as developed in Ghosh, Gelfand
and Clark (2012), are deferred to the Appendix. In Sec-
tion 3 we describe the FIA data set, as well as the cli-
mate data. In Section 4 we develop the scaling model
ideas, first with a full data set, then for a very sparse
data set. In Section 5 we provide a simulation investi-
gation to demonstrate the loss of information due to the
severe missingness as well as an analysis of the FIA
data set. We offer some concluding remarks in Sec-
tion 6.

2. INTEGRAL PROJECTION MODELS

In this section we briefly review the MPM, then turn
to the IPM and its properties. We discuss how to intro-
duce uncertainty into the IPM specification and con-
clude with a short discussion of how we fit these mod-
els. Again, MPMs and IPMs are techniques of choice
for ecological demography. These models are specified
with two indices, one for time, the other for trait level,
for example, size, age, stage. There can be continuity
or discreteness in time as well as continuity or discrete-
ness in the trait space. With discrete time and categori-
cal trait space, we have a MPM; with discrete time and
continuous trait space, an IPM. As Sections 2.1 and 2.2
reveal, MPMs and IPMs are not associated with a spec-
ified region. There is no spatial index in these mod-
els. This reveals that scaling cannot be done over ge-
ographic space. A different approach is needed, which
we propose in Section 4.

2.1 Matrix Projection Models

MPMs specify population structure dynamically.
The state of the population at time t , as a vector of
binned cell counts, n(t), is multiplied by a population
projection matrix, A, to yield the state of the popula-
tion at time t + 1,

n(t + 1) = An(t).(1)

If the projection matrix is assumed to be time-invariant,
a linear system of difference equations results to de-
scribe the evolution of the population. When one al-
lows the projection matrix to vary because of exter-
nal factors independent of the state of the population,

a more general, time-varying difference equation ver-
sion is obtained. If the projection matrix depends on the
current state of population itself, denoted by n(t +1) =
Ann(t), we obtain a nonlinear model termed a density-
dependent MPM. Tuljapurkar and Caswell (1997) and
Caswell (2001) discuss the features of all these MPMs
in detail. Caswell (2008) examines change in response
of nonlinear matrix population models to changes in its
parameters.

In (1), the Aij give the average per-capita contribu-
tion from individuals in category j at time t to category
i at time t + 1, either by survival, growth or reproduc-
tion. Typically, A is written as A = T + F with T de-
scribing transition (survival and growth) and F describ-
ing reproduction (fecundity). The stationary behavior
of this matrix projection equation is obtained in terms
of the eigenvalues (�i) and eigenvectors (wi) of A.
The long-term (ergodic) behavior of n(t) is determined
by the dominant eigenvalue, max(�i), and associated
right eigenvector (see the book of Caswell, 2001, for
further details). Further eigenanalysis of the projection
matrix yields a set of population statistics, viz., popula-
tion growth rate, damping ratio, reproductive value and
so on Caswell (2001). When the model is density de-
pendent, the resulting behavior of the matrix equation
cannot be written in terms of eigenvalues and eigen-
vectors (Caswell, 2001, page 504). In fact, equilibrium
behavior need not exist.

2.2 The IPM and its Properties

For continuous traits and, in particular, for diame-
ters, the MPM classes/stages are ordinal with definition
being somewhat arbitrary. In this regard, Easterling,
Ellner and Dixon (2000) and Ellner and Rees (2006)
note that the IPM is proposed to remove the catego-
rization required under the MPM approach. Here, we
briefly review the behavior of an IPM as a determin-
istic specification. Working with intensities, γt (·), sub-
scripted by time, we replace the MPM with

γt+1(y) =
∫ U

L
K(y;x)γt (x) dx.(2)

The kernel K(y,x) is the IPM analog of the projection
matrix A in a MPM. L and U are the lower and upper
limits for the values of the trait.1 Note that γt (x) is an

1Formally, finite point patterns are associated with bounded do-
mains to ensure that the integral of the intensity over the domain
is finite. In one dimension this means confining the support for γ

to a bounded interval. Adopting this restriction in our setting im-
plies that L can be 0, but we take U < ∞. This is a mild practical
constraint.
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intensity at time t implicitly associated with some re-
gion which we will refer to as a plot. So, if we integrate
γt (x) over an interval of diameters, we obtain the ex-
pected number of individuals in the plot with diameters
in that interval, at time t . Therefore, γt,· = ∫ U

L γt (x) dx

is the expected number of individuals (population size)
for the plot, at time t . Integrating (2) over y from L to
U yields γt+1,· = ∫ U

L K(·, x)γt (x) dx, where K(·, x) =∫ U
L K(y;x)dy; γt+1,· can be compared with γt,·. To

give a population level interpretation to (2), it may be
easiest to think in terms of intensity elements. That is,
γt+1(y) dy = ∫ U

L K(y;x)dyγt (x) dx. But then, we see
that K(y;x)γt (x) dy dx is the expected number of in-
dividuals in diameter interval (y, y + dy) at time t + 1
from all individuals in diameter interval (x, x + dx) at
time t .

The eigenvalue theory for the IPM is directly con-
nected to that for the MPM by viewing K(y;x) as a
linear operator, that is, Kh ≡ ∫ U

L K(y;x)h(x) dx. If �

is the largest eigenvalue associated with K and w(x)

is the associated right eigenfunction,
∫ U
L K(y;x) ·

w(x)dx = �w(y), showing that, at steady state, � is
the growth rate and w(x) (normalized) is the steady
state diameter distribution.2 As a result, Ktw = �tw,
but for arbitrary initial diameter distribution γ0(x), the
projection Ktγ0 need not be close to the projection
�tγ0.

Specification of K introduces a survival and growth
term as well as a fecundity or recruitment term. In prac-
tice, a time-independent K is not plausible; we employ
a Kt that is dependent on levels of suitable environ-
mental variables, say, Zt , during year t , as well as den-
sity dependent, that is, a function of γt,·. Details on
how we introduce these features into Kt are supplied in
the Appendix. The foregoing scaling challenge is apart
from the form of Kt(y;x) so, in the sequel, we treat Kt

generically.
Sometimes normalization is introduced into the IPM.

For instance, we might replace K(y;x) in (2) with, say,
K(y;x)/K(·;x), a normalized version. However, this
removes the interpretation of γt (x) as an intensity since
it imposes γt,· constant over t . Normalizing γt (x) to
the density γ̃t (x) = γt (x)/γt,· is also unattractive since
it now normalizes the resulting γt+1(y) by γt,· rather
than by γt+1,·.

2The Perron–Frobenius theory tells us that, at this �, w(x) ≥ 0
∀x.

2.3 Introducing Uncertainty

As specified, the foregoing IPM is deterministic,
raising the question of where and how to insert un-
certainty. Within the Bayesian framework, a natural
choice is to make the parameters random. However,
a broader concern involves uncertainty associated with
the form of K itself. Insisting that the IPM model is
correct (even with “best” parameter estimates) is too
restrictive. Rather, we view the outcome of the IPM
as a sequence of intensities, γt (y). Then, the operat-
ing intensity, λt (y) (i.e., the intensity that drives the
observed point pattern a time t), is assumed to vary
around γt (y). It is easier and more direct to specify un-
certainty through the λ’s than through the K’s; the lat-
ter will prove computationally infeasible. With regard
to the intensities, we write λt (x) = γt (x)eεt (x), where
εt is a stationary Gaussian process over [L,U ] with
covariance function σ 2

ε ρ(·, φ) and mean 0.3 We have a
log Gaussian Cox process (Møller and Waagepetersen,
2004).

To allow for time-varying redistribution kernels, at
least two approaches emerge. The first assumes that
a vector of parameters is randomly chosen at each
time point so that Kt takes the form K(y, x; θ(t)).
This strategy is employed (with individual-level data)
in, for example, Rees and Ellner (2009), where, un-
der parametric modeling for K(y, x; θ), the posterior
for θ provides draws for θ(t). These draws may be in-
terpreted as providing temporal random effects rather
than parameter uncertainty. A more general regres-
sion approach is to assume that K is specified as a
fixed parametric function but involving time-varying
climate covariates and density dependence. Again, spe-
cific choices that we employ are supplied in the Ap-
pendix. In any event, we note that propagation of in-
tensities through the Kt ’s will not yield explicit forms
(even for stationary K’s). In fact, starting from time 0,
at time t we will have a t-dimensional integration
for γt .

Last, we do not apply the Kt(y, x) to λt(x). Rather,
we allow the IPM to provide dynamics in a determin-
istic fashion for the γt ’s, again viewing the λt ’s driv-
ing the point patterns as varying around their respective
γt ’s. This specification suggests a pseudo-IPM approx-
imation, as discussed in Section 2.4. As a result, the
λt ’s are conditionally independent given the {γt }’s. At

3It might be more natural to set the mean equal to −σ 2
ε /2 so that

E(εt (x)) = 1. However, mean 0 only implies a scaling of λ relative
to γ .
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the highest level, we assume the point patterns, the xt ’s,
are conditionally independent given their {λt }’s with a
nonhomogeneous Poisson process likelihood given by

[xt |λt ] ∝
[

exp
(
−

∫ U

L
λt (x) dx

) nt∏
i=1

λt (xti)

]
.(3)

Hence, across t , the observed diameters are condition-
ally independent given λt (x), but are marginally de-
pendent due to the log Gaussian Cox process model
for λt (x).

Modeling is initiated with γ0, a kernel intensity es-
timate (Diggle, 2003). Hence, the full posterior is pro-
portional to

T∏
t=1

[
xt |λt (x), x ∈ [L,U ]]

·
T∏

t=2

[
λt (x), x ∈ [L,U ]|γt (x), x ∈ [L,U ], σ 2, φ

]
(4)

· [{
γt (θ , γ0), t = 1, . . . , T

}][
σ 2][φ][θ ].

In (4), the bracketed term involving {γt } is a degener-
ate distribution. It is employed here to denote the deter-
ministic functional specification for the γt ’s given the
IPM and θ .

2.4 Model Fitting

We handle the stochastic integral in (3) by discretiza-
tion, as described in the Appendix. However, the model
described in (4), using (2), is computationally de-
manding to fit. The challenge arises because (2), with
Kt(y;x) as in (10) in the Appendix, does not have a
closed form solution; we need to resort to numerical
integration to create the sequence of {γt (x)}. More-
over, the dimension of the numerical integrations in-
creases as the number of time epochs increases and
consequently will result in an explosion of summations
over time. An MCMC scheme will be computation-
ally prohibitive because we will have to perform these
integrations iteration by iteration. Following Ghosh,
Gelfand and Clark (2012), we propose an approximate
“pseudo” IPM approach, using adjacent pairs of years,
that allows us to handle general Kt .

As above (14) in the Appendix, we consider x∗
j to

be the center of the grid cell j . Then the pseudo-IPM
update is given by

γt+1
(
x∗
j

) = ∑
l

Kt

(
x∗
j |x∗

l ; zt , θ, γt,·
)
γ̂t

(
x∗
l

)
,(5)

where γ̂t (x) is an empirical estimate of the inten-
sity corresponding to the point pattern observed at

FIG. 1. Graphical model driving the dynamics in the “pseudo”
IPM.

time point t evaluated at the grid centers x∗
l . Under

this updating scheme, for each t , we replace the t-
dimensional integral required to get γt (x) in (2) by
a one-dimensional integral. In (4), to obtain [{γt }; θ ]
would require computing the γt deterministically and
sequentially for a given θ , that is,

∏T
1 [γt |θ, γt−1]. Us-

ing (5), this now becomes
∏T

1 [γt |θ ,xt−1], where xt−1
yields γ̂t−1(x). The graphical model shown in Figure 1
captures the pseudo-IPM approximation. By analogy,
pseudo-likelihood approximations in the literature of-
ten work with pairs (in our case, years) of observations,
often with good asymptotic properties, though we can-
not make such claims here. However, the fact that our
approximation from time t to time t + 1 omits the un-
certainty provided by λt suggests that we will underes-
timate uncertainty.

3. DATA TYPES AND THE FIA DATA SET

In order to clarify the proposed scaling approach, we
first describe the motivating FIA data set as well as
the associated climate data. With MPMs, demographic
data are customarily available at the individual level
over time. However, the case where the data is in the
form of a time series of population vectors is also
discussed (see Caswell, 2001). With data of the lat-
ter type, we observe a sequence of population vectors
n(t1),n(t2), . . . without distinguishing the individuals.
Dennis et al. (1995, 1997) use nonlinear multivariate
time-series methodology to obtain the maximum likeli-
hood estimates of the model parameters in this setting.
With IPMs, such data would consist of a time series
of point patterns for the trait distribution, for example,
diameter, over the study region.
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For individual level data, perhaps the most direct
modeling strategy would be through a dynamic model
with individual level random effects as in, for exam-
ple, Clark et al. (2010). The state-space framework pro-
vides inference on individual variation in terms of pop-
ulation parameters, while being anchored directly by
observations at the same scale (or with specifications
that translate data to process scales, e.g., seed traps to
trees). Afterward, desired population-level summaries
can be created.

However, at large geographic scales, tracking of in-
dividuals is not feasible. For instance, we cannot hope
to track individuals in thousands of forests on an an-
nual basis over a span of decades. Collecting marginal
point patterns at the scale of plots, without transition
information on individuals, is more realistic. Even so,
annual censusing of plots may not be. Hence, we need
to be able to fit IPMs with data of the this type.

3.1 The FIA Data

The USDA Forest Services Forest Inventory and
Analysis (FIA) program is the primary source for in-
formation about the extent, condition, status and trends
of forest resources in the United States (Smith et al.,
2009). FIA applies a nationally consistent sampling
protocol using a quasi-systematic design covering all
ownerships across the United States, resulting in a na-
tional sample intensity of one plot per 2428 hectare
(Bechtold and Patterson, 2005) where plots are 54 m2.
Aerial photography and/or classified satellite imagery
is used to stratify the population (i.e., increase the pre-
cision of population estimates) and to establish perma-
nent inventory plots in forest land uses. Forested land is
defined as areas at least 10% covered by tree species, at
least 0.4 ha in diameter, and at least 36.6 m wide. FIA
inventory plots that are established in forested condi-
tions consist of four 7.2 m fixed radius subplots spaced
36.6 m apart in a triangular arrangement with one sub-
plot in the center (Bechtold and Patterson, 2005). All
trees (standing live and dead) with a diameter at breast
height (dbh) of at least 12.7 cm are inventoried on
forested subplots. Within each subplot, a 2.07 m ra-
dius microplot offset 3.66 m from subplot center is es-
tablished where only live trees with a dbh between 2.5
and 12.7 cm are inventoried. Within each microplot, all
live tree seedlings are tallied according to species.

The program includes the measurement of a fixed
proportion of the plots in each state, in each year,
known as annual inventory. The legislative mandate
requires measurement of 20% of the plots in each

state, each year (FIA factsheet series, available on-
line, http://www.fia.fs.fed.us/library/fact-sheets/data-
collections/Sampling and Plot Design.pdf). In this
analysis, the FIA data we employ were extracted from
the most recent annual inventories (2000 to 2010) in 31
eastern states for a total of 43,396 inventory plots from
FIADB version 4.0 on March 16, 2010 (available on-
line http://fia.fs.fed.us/). The sampling is sparse in the
initial years. Collection increases starts in 2003 and
reaches its current level in 2006. The FIA plots sam-
pled in year 2001 along with those sampled in 2006 are
shown in Figure 2. A display of the set of plots sampled
in 2007 would look almost the same as in Figure 2(b).
Nonetheless, there would be no overlap between the
two sets of plots!

3.2 The Climate Data

The climate data in this study was extracted from
the 800m resolution Parameter-elevation Regressions
on Independent Slopes Model (PRISM) data set (avail-
able online http://www.prism.oregonstate.edu/). Rec-
ognized as the highest quality spatial climate data sets,
PRISM is a sophisticated interpolation that uses me-
teorological station data to produce continuous, dig-
ital grid estimates of climatic parameters, with con-
sideration of location, elevation, coastal proximity, to-
pographic facet orientation, vertical atmospheric layer,
topographic position and orographic effectiveness of
the terrain (Daly et al., 2008). In each FIA-measured
plot, we used the climate data from the previous year
to create the climatic covariates. We extracted the an-
nual average precipitation (in mm) and the mean winter
temperature (in ◦C), the average of January, February
and March maximum and minimum monthly values.

Since climatological covariates operate over a broad
geographical area, they may not explain the variation
in, for example, diameter distribution of a species at
the plot level (Canham and Thomas, 2010). Such vari-
ation will likely depend more on micro-scale covariates
like soil moisture, nutrient availability and so on, which
are not available to us. As a result, an approach to en-
able climate to provide explanation of demography is
through suitable scaling. The scaling model described
in the next section offers a viable way to study diam-
eter distribution with this objective. The key idea is to
partition climate space into bins.

4. A SCALING MODEL

We first present the extension of the model in (2) to
enable the desired scaling in the context of a full data

http://www.fia.fs.fed.us/library/fact-sheets/data-collections/Sampling_and_Plot_Design.pdf
http://fia.fs.fed.us/
http://www.prism.oregonstate.edu/
http://www.fia.fs.fed.us/library/fact-sheets/data-collections/Sampling_and_Plot_Design.pdf
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(a) (b)

FIG. 2. Map of the sampled FIA plots in (a) 2001 and (b) 2006.

set, that is, a data set supplying annual diameter dis-
tributions (point patterns) for every FIA plot. Then we
present the model we employ to deal with the extreme
sparseness. A convenient way to appreciate the scaling
challenge is to envision a rectangular array where the
rows represent the plots, the columns denote the years,
and, in a given cell, we have a point pattern of diame-
ters. In a full data set, we have an observed point pat-
tern in every cell. Imagining this for the FIA data col-
lection over ten years would entail more than 400,000
point patterns. With the actual FIA data collection, we
have more than 80% of the cells empty and for no plot
do we have point patterns in consecutive years.

4.1 The Full Data Scaling Model

Again, we note that the IPM is indexed by time and
by trait value but there is no spatial index. In our con-
text, there is redistribution over trait space but no redis-
tribution over geographic space; the model specified in
(2) operates at the plot level. With multiple plots, per-
haps spatially-referenced, in principle, we could fit this
model plot by plot. While such an analysis might be
useful in some contexts, biogeographic studies require
joint modeling across plots. In other words, it would be
very difficult to develop a synthesis that would tell a big
picture demography story from such an analysis and,
as noted above, it would be difficult to capture climate
effects. Moreover, it is evidently not scaling the data
to larger geographic regions. In theory, with spatially-
referenced plots, we might imagine introducing plot-

level spatial random effects into a joint model across
plots. However, with the FIA data, plots are not con-
tiguous; they are sparse across the eastern U.S. so such
spatial analysis is not appropriate.4 Rather, as noted
earlier, an attractive feature of working with point pat-
terns and associated intensities in a Cox process setting
is the convenience of aggregating intensities to explain
aggregated point patterns. First, we consider how we
might do this with a full data set.

Recall that each plot is subjected to a sequence of an-
nual climate variables across the years of data collec-
tion. Suppose we partition the climate space into a col-
lection of climate bins, indexed by l = 1,2, . . . ,M . In
the present setting, we have two climate covariates and
we are partitioning the upper right quadrant of R2. (Be-
low, we say more about the choice of partition.) Sup-
pose we label each climate bin by a suitable centroid
(defined below). Then, we have a set of M climates
which are labeled as z∗

l . Suppose, in year t , we assign
label Lj,t = l to plot j if it received climate falling
in bin l. Thus, in year t , all of these plots will have
their diameter distributions operated on by the same
redistribution kernel, that is, K as in (10) in the Ap-
pendix with zt = z∗

l , apart from plot-specific density
dependence. In particular, suppose St,l = {j :Lj,t = l}

4An alternative might be to introduce i.i.d. plot level random ef-
fects, but this will substantially increase the dimension of the model
and such a model be difficult to fit, especially in our very sparse
sampling setting.
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and there are nt,l plots receiving climate z∗
l in year t .

Then,
∑

j∈St,l
γj,t (x) is the cumulated intensity sub-

jected to K , with zt = z∗
l in year t . The only mod-

ification is that, if density dependence appears in K ,
then the population size for density dependence would
be

∑
j∈St,l

γj,t,·. We acknowledge that density depen-
dence operates at the plot scale, not at the scale of ag-
gregation to climate bins. However, at larger scale, it is
still arguable that an increase in aggregated abundance
at year t will place a scaled increase in resource pres-
sure on the species for year t +1. Moreover, if we wish,
we can compare models with and without aggregated
density dependence.

If we do the above for each l, then in year t , every
plot will have been assigned to a unique climate bin
and we can fit the IPM across the M bins for year t .
Then, if we do this for each year, we have jointly fitted
the IPM across all plots for all years.

Finally, we assign as the “centroid” to bin l the aver-
age of all of the climates for all of the plots across all
of the time points that fell into bin l. That is, we keep
the partitions the same from year to year and we keep
the labels constant across time as well. As for the cre-
ation of the partitions, we overlay a bounding rectangle
on the observed climates for all plots and all years in
the study. We then partition the temperature axis (mean
winter temperature) as well as the precipitation axis
(average annual precipitation) to create a rectangular
grid. Some bins will be empty in one or more years;
they are not considered. In fact, if, for a given species,
there were no occurrences across all plots in a climate
bin in a given year, then the bin is not considered for
that year. We have no point pattern to drive the pseudo-
IPM for the species in that year.

Again, we emphasize that we are scaling in climate
space, not in geographic space; we are aggregating
plots receiving essentially a common climate in a given
year regardless of where they are in physical space.
But, this raises the question of what projection means
under such scaling? In climate space, we fit data across
M × T cells but it makes no sense to project a climate
bin in time. If we aggregated plots in geographic space,
we would not necessarily find common climate for all
plots in each year. So, we cannot do projection for such
spatially aggregated plots? The conclusion is that we
should think of projection at the plot level or for an
aggregated collection of plots receiving the same se-
quence of climate variables over time. Projection un-
der such aggregation may be adequate to address large
scale response to broad, coarse spatial resolution cli-
mate scenarios. In any event, these limitations are not a

criticism of our approach to scaling. Rather, they clar-
ify what projection can entail. Moreover, as we shall
see in the next subsection, our approach offers the only
way to implement demographic modeling for the FIA
data with its inherent sparseness.

To conclude here, we consider inference summaries
under our modeling. First, we can present posterior
summaries of the model parameters, that is, all of the
parameters in the Kt ’s. Next, we can develop poste-
rior predictive intensities to compare with empirical in-
tensities for different (l, t) combinations. Also, we can
provide comparison of observed and predicted popu-
lation sizes under various (l, t) combinations. Last, at
the plot level, we can implement projection under the
model and compare predicted intensities and popula-
tion sizes with their observed counterparts.

4.2 Accommodating the Sparseness in the
FIA Data

With regard to the discussion of the previous subsec-
tion, now, for every species, our plot by year array has
more then 80% cells with no observed point pattern.
As above, for plot j at time t , if zj,t is the associated
covariate, we will assign label Lj,t = l if zj,t falls in
bin l. So, if Lj,t = l, the redistribution kernel operat-
ing at time t is Kt(y, x; zl, θ).

We formalize our modeling at the plot level, that is,
for plot j in year t , if Lj,t = l,

γj,t+1(y) =
∫

K(y, x; zl , θ)γj,t (x) dx.(6)

With the foregoing notation, for year t , we have St,l =
{j :Lj,t = l}, l = 1,2, . . . ,M , with nt,l , the number
of plots in St,l . The number of plots in

⋃
l St,l is nt ,

the number of FIA plots in year t . (There is year to
year variation.) Next, let Ij,t = 1,0 if plot j is mea-
sured (observed) or not in year t . That is, if Ij,t = 1,
we observe a point pattern, xl,t . Then, let St,l,1 =
{j :Lj,t = l, Ij,t = 1}, St,l,0 = {j :Lj,t = l, Ij,t =
0}. Evidently, St,l,1 ∪ St,l,0 = St,l . Similarly, define
Rt,l,1 = {j :Lj,t = l, Ij,t+1 = 1}, Rt,l,0 = {j :Lj,t =
l, Ij,t+1 = 0}. So, Rt,l,1 ∪ Rt,l,0 = St,l . The idea here
is, for plots that experienced zl in year t , we wish to
capture the set which was observed at the start of the
year (St,l,1) and the set which was observed at the end
of the year (Rt,l,1). Again, St,l,1 and Rt,l,1 are disjoint,
providing the crux of the missing data challenge. Let
nt,l,1 and mt,l,1 denote the number of plots in St,l,1 and
Rt,l,1, respectively.
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From (6), we have the following conceptual IPM
scaling: ∑

j∈St,l

γj,t+1(y)

(7)
=

∫
D

K(y, x; zl, θ)
∑

j∈St,l

γj,t (x) dx.

Again, we only see a subset of the plots on the left-hand
side of (7) and also only a subset of the plots on the
right-hand side. However, dividing both sides by nt,l ,
we have the “per plot” (or average) intensity,

γ̄l,t+1(y) =
∫
D

K(y, x; zl , θ)γ̄l,t (x) dx(8)

with the obvious definition for the γ̄ ’s.
But, this leads to the natural approximations:

γ̃l,t+1(y) ≈ γ̄l,t+1(y) and γ̃l,t (x) ≈ γ̄l,t (x), where
γ̃l,t+1(y) = ∑

j∈Rt,l,1
γj,t+1(y)/mt,l,1 and γ̃l,t (x) =∑

j∈St,l,1
γj,t (x)/nt,l,1.

So, for each t and l, we work with the approximate
IPM relationship,

γ̃l,t+1(y) =
∫
D

K(y, x; zl, θ)γ̃l,t (x) dx.(9)

To use this relationship, we have to do two things:
(i) create an empirical estimate of γ̃l,t (x) with the

observed xj,t for j ∈ Sl,t,1 to use on the right-hand
side. We do this by creating an empirical intensity
based upon all of the plots in St,l,1 and then scaling
the intensity by nt,l,1.

(ii) use the observed xj,t+1 for j ∈ Rt,l,1 to inform
about the left-hand side. That is, the observed xj,t+1
are linked to mt,l,1λl,t+1(y), as above in expression (9),
in the likelihood and λl,t+1(y) is linked to γ̃l,t+1(y),
up to log GP error, as in Section 2.3. To do this, we
introduce a “per plot” log GP error for each climate
bin in each year.

A further complication arises due to lack of infor-
mation about new recruits [again, see (10)–(12) and re-
lated discussion in the Appendix]. In the absence of
consecutive years of data, we cannot distinguish if an
individual observed at time t + 1 in bin l is actually
a new recruit (crossing the boundary from seedling to
trees) or was in an unsampled plot in that bin at time t .
Due to this ambiguity, δ1 in (12) cannot be estimated
reliably. Hence, the effect of density dependence on
recruitment rate cannot be ascertained at this level of
sparsity. As a result, we set δ1 = 0 and thereby assume
a time-invariant 
.

As with a full data set but even more so, some blocks
will be empty in one or more years; they are not con-
sidered. Again, if, for a given species, there were no
occurrences across all plots in a bin in a given year,
then we have no point pattern to drive the pseudo-IPM
for that bin for that year. For that species, the bin is not
considered for that year. Inference summaries will par-
allel those we proposed above to create with a full data
set.

5. A SIMULATION AND AN FIA DATA ANALYSIS

In Section 5.1 we provide a simulation to show how
well our approach works with a full data set and also to
reveal the effect of the loss of information as we go to
50% and also 80% missingness. Then, in Section 5.2,
we turn to the FIA data, to look at two species, recog-
nizing the inference challenges imposed by the spar-
sity.

5.1 A Simulation Example

To illustrate the performance of the model under var-
ious level of missingness, we performed the following
simulation study. We envisioned a covariate with four
levels assigned as z = 0,1,2,3 and to each covari-
ate level we assigned 100 FIA plots from year 2005.
Thus, the covariate level can be viewed as a climate,
defining four “climate bins” with, initially, 100 plots
in each bin. We used the empirical intensity associ-
ated with each plot (from the 2005 FIA data), say,
γ̂lj,0(x

∗), l = 1,2,3,4; j = 1,2, . . . ,100, as the initial
condition, for x∗’s as described in Section 2.4. We plug
this initial intensity in the pseudo-IPM (5) with co-
variate information inserted in the redistribution ker-
nel (10) to obtain γ1(·) (for each plot) at the follow-
ing time point. With regard to K , we used the forms
in the Appendix, fixing Q0 = 1, δ1 = 0, and μ = 0,
with the remaining parameter values set as in Table 1.
We seek to infer about these remaining parameters, in-
cluding the regression coefficient β for climate, as well
as to project 10 years forward. To mimic the FIA data
set, we randomize the plots to changing climate at each
time point following the illustrative transition matrix
shown below:

Location at t + 1

Location at t 0 1 2 3

0 0.7 0.2 0.07 0.03
1 0.2 0.7 0.03 0.07
2 0.07 0.03 0.7 0.2
3 0.03 0.07 0.2 0.7
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TABLE 1
Posterior summaries of model parameters under various levels of

missingness for the simulated data. Posterior mean and 95%
equal tail credible intervals provided

True Level of
Parameters value missingness Posterior summary

Q1 0.01 0% 0.0171 (0.0058, 0.0292)
σ 0.25 0.2456 (0.1054, 0.3923)
δ0 0.30 0.3467 (0.2161, 0.4860)
η 0.10 0.1253 (0.0548, 0.1953)
β 0.01 0.0091 (0.0034, 0.0148)

Q1 0.01 50% 0.0174 (0.0016, 0.0275)
σ 0.25 0.2695 (0.0596, 0.4849)
δ0 0.30 0.3281 (0.1181, 0.5643)
η 0.10 0.1242 (0.0530, 0.1962)
β 0.01 0.0146 (−0.0002, 0.0292)

Q1 0.01 80% 0.0293 (0.0125, 0.0582)
σ 0.25 0.5702 (0.2756, 0.8323)
δ0 0.30 0.3536 (0.1783, 0.5315)
η 0.10 0.0824 (0.0089, 0.2201)
β 0.01 0.0691 (0.0220, 0.1166)

In this fashion, for each plot, we generate a sequence of
γt (x

∗) for 10 time points and then an associated point
pattern. We then fit the scaling model (9) using the first
nine time points of the complete data set. The aver-
age empirical intensity at each covariate bin at t = 1
[γ̃l,1(x

∗)] is used in fitting this full data model. The
posterior summary of the parameters (Table 1) suggests
that, when there is no missingness, the scaling model
can recover the parameters of the plot level model.

In order to investigate our ability to recover the pa-
rameters under a moderate amount of missingness, we
randomly remove 50 plots from each covariate bin at
each of the first nine time points and fit the scaling
model (9) using the remaining available 200 plots at
each time point in the training set. The posterior sum-
mary in Table 1 shows that we can still recover cer-
tain parameters, although, as expected, the uncertainty
associated with these estimates is higher than that ob-
tained for the complete data set. Turning to extreme
missingness, as in the FIA data, we randomly remove
80 plots from each covariate bin at every time point in
the training set and then fit the scaling model to the re-
maining plots. The posterior summary in Table 1 shows
that the intervals are now even longer and not well cen-
tered. In summary, our modeling approach is viable
but, with very high levels of missingness, our ability
to learn about the process will be limited.

Next, we illustrate how missingness leads to in-
creased uncertainty in projection. Let comp and ext

be posterior samples of all the parameters obtained
from fitting the scaling model on the complete data set
and the data set with 80% missing plots, respectively.
Using 

comp
b , the bth posterior sample of comp and

γ̃l,1(x
∗), we generate γ̃l,2(x

∗;comp
b ), . . . , γ̃l,10(x

∗,


comp
b ), l = 1,2,3,4;b = 1,2, . . . ,B . Similarly, using

ext
b , we generate γ̃l,1(x

∗;ext
b ), . . . , γ̃l,10(x

∗,ext
b ).

Figure 3 shows the true γ̃l,10(x
∗) along with the

pointwise 95% CI obtained for γ̃l,10(x
∗,comp

b ) and
γ̃l,10(x

∗,ext
b ) for l = 1,2,3,4. In all cases we are able

to contain the true ten year projections under the ex-
treme missingness but, as expected, the uncertainties
associated with the projection using ext are substan-
tially higher than those obtained for comp.

5.2 Data Analysis for Two Species

We illustrate the scaling model on two species Acer
rubrum (ACRU) and Liriodendron tulipifera (LITU).
ACRU has a broad geographic distribution, its range
extending from the Gulf Coast of the eastern United
States to Canada. It can thrive on mesic (moderate
moisture) to xeric (dry) sites. Compared with ACRU,
LITU is much less widespread. Its range does not ex-
tend as far north, nor does it occupy xeric sites.

Due to the extreme sparsity of sampling prior to
2005, the scaling model is fitted on data from 2005
through 2010. We use the data from 2005 to provide the
initial intensities. We partition the available informa-
tion (from the PRISM data set) on pairs of mean win-
ter temperature and average annual precipitation for the
period under study in a 5 × 5 equi-spaced grid and use
the “centroid” (see Section 5.1) of each bin as zl . Fig-
ures 4(a) and 4(b) show climate bins for ACRU and
LITU, respectively, along with the logarithm of the
total number of plots observed in each bin, for each
species during the period of study. We see that, for
ACRU and, even more so, for LITU, there are climate
bins in which the species were not observed. Also, for
convenience in display, the bins are numbered from 1
to 25 as indicated.

For display purposes, we choose four climate bins
that have at least 100 individuals in each of the years
under study. Figure 5a shows the summary of the es-
timated per-plot intensities for ACRU for these grids
for 2006. The corresponding observed empirical per-
plot intensity is overlaid. Figure 5b shows the same for
year 2009. Figures 6a and 6b are similar to Figures 5a
and 5b but for the species LITU. Two remarks emerge,
neither unexpected in view of the severe sparsity. We
evidently do better in some climate bins than others
and we have a very large amount of uncertainty.
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FIG. 3. Plot of true simulated γ̃l,10(x∗) (solid) for four covariate bins (see text for details). Overlaid are the pointwise 95% CI of the
projected γl,10(x∗) under the complete data set (dashed) and those under the sparse data set with 80% missingness per time point (dotted).
The covariate levels are noted atop the figures. Note: the posterior medians are not displayed in Figure 3. Those figures are available upon
request.

To further assess the goodness of fit, we plot the
posterior summary of the per-plot estimated population
size for nonempty climate bins (indexed as in Figure 4)
in Figures 7a and 7b. Overlaid are the observed per-
plot population size in the corresponding climate grid.
Generally, our prediction is successful but, again, our
uncertainty is very high.

The posterior summaries of the parameters for both
species are shown in Table 2. We assumed the up-
per bound for survival probability for both ACRU and

LITU to be 0.9 and the estimates of Q1 suggest a
stronger density dependence for ACRU as compared
to LITU. The recruitment rate (
) for ACRU is higher
than that for LITU, explaining the relatively higher
abundance of the former compared to the latter. The
climate covariates do not seem to significantly impact
the evolution of population size for either species. We
attribute this, again, to the severe sparsity which leads
to high uncertainty in these parameters, manifested by
very wide credible intervals. Projection would proceed
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FIG. 4. The climate bins along with the logarithm of the number of plots in which (a) ACRU were observed during the period of study (from
2005 to 2010) in each bin, and (b) LITU were observed during the period of study (from 2005 to 2010) in each bin. Also, the bins are indexed
from 1 to 25.

FIG. 5a. Posterior mean (solid) and pointwise 95% CI (dashed) for the estimated per-plot intensity for ACRU for 2006. The observed
empirical per-plot intensity is overlaid (dash-dotted). The temperature and precipitation corresponding to the grid centroid are noted atop.
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FIG. 5b. Posterior mean (solid) and pointwise 95% CI (dashed) for the estimated per-plot intensity for ACRU for 2009. The observed
empirical per-plot intensity is overlaid (dash-dotted). The temperature and precipitation corresponding to the grid centroid are noted atop.

at the plot level, assuming we know climate in the in-
tervening, unobserved years.

6. A BRIEF SUMMARY AND FUTURE WORK

Only in recent work of Ghosh, Gelfand and Clark
(2012) have IPM models been considered at the pop-
ulation scale and never have IPM models been con-
sidered at large regional scales or in the absence of
data for consecutive time periods. Here we have pre-
sented a modeling approach to enable this in the con-
text of an important demographic data set, the FIA
data which samples plots, not individuals, roughly ev-
ery five years, for the entire eastern half of the United
States. After specifying our population level IPM, we
have shown how to scale this IPM from plots to large
regions and then we have shown how to approximately
fit this scaled specification in the presence of the more

than 80% absence in the IPM data. We have illustrated
the analysis for two species in the FIA data set.

Future work will see us investigating additional
species in the FIA database (there are roughly 100
and many are not prevalent) to compare IPMs. We
will also explore the possibility of building a joint IPM
specification to allow for dependence between species.
Such dependence could obviously affect both popula-
tion size and diameter distribution. Scaling such joint
models from plots to large geographic regions will add
further challenge.

APPENDIX

The redistribution kernel K is specified as a para-
metric form. We assume K to be comprised of growth
and recruitment with climate scaling and density de-
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FIG. 6a. Posterior mean (solid) and pointwise 95% CI (dashed) for the estimated per-plot intensity for LITU for 2006. The observed
empirical per-plot intensity is overlaid (dash-dotted). The temperature and precipitation corresponding to the grid centroid are noted atop.

pendence in the form

Kt(y, x; zt , θ, γt,·) = (
Gt(y, x; zt , θ, γt,·)

(10)
+ Rt(y; zt , θ, γt,·)

)
ezT

t β .

In (10), the exponential term implies multiplicative
scaling of climate effects regardless of x. It is intro-
duced illustratively and to facilitate model identifiabil-
ity and fitting; thus, the zt ’s are removed from the G

and R terms. We have considered other forms for K .
For instance, climate might drive growth, that is, be in-
troduced in f while population size or growth could
be introduced to drive survival. The flexibility in spec-
ifying K is attractive, but the more complex K is, the
weaker the identifiability, the greater the sensitivity to
prior specification, the more difficult the model fitting.
The suggestion is that simple forms for the vital rates
below, which determine K , may be more sensible.

In fact, the growth term Gt(·) is further decomposed
as

Gt(y|x; θ , γt,·) = q(x, γt,·)ft (y − x; θ).

Again, returning to density elements, we interpret
q(x, γt,·)ft (y − x; θ)γt (x) dx dy as the expected num-
ber of individuals in diameter interval (y, y + dy)

at time t + 1 from survivors in diameter interval
(x, x + dx) at time t . In particular, we assume ft to
be Gaussian density. Note that a translation-invariant
ft can be appropriate at the population level, though it
would almost never be sensible at the individual level.
In the sequel, again for convenience, we assume sur-
vival probability declines as a function of γt,· due to
resource limitation (but not as a function of diameter)
and consider a logit form,

q(γt,·) = Q0e
−Q1γt,·

1 + Q0e
−Q1γt,· ,(11)
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FIG. 6b. Posterior mean (solid) and pointwise 95% CI (dashed) for the estimated per-plot intensity for LITU for 2009. The observed
empirical per-plot intensity is overlaid (dash-dotted). The temperature and precipitation corresponding to the bin centroid are noted atop.

where Q0 and Q1 (both > 0) are parameters that gov-
ern the rate of decay of the survival probability.

The recruitment term takes a form similar to the
growth term,

Rt(y; θ, γt,·) = 
(x,γt,·)gt (y; θ).

With density elements, analogously, we interpret 
(x,

γt,·)gt (y; θ)γt (x) dx dy as the expected number of re-
cruited individuals in diameter interval (y, y + dy)

at time t + 1 from individuals in diameter interval
(x, x + dx) at time t . Usually, the terms on the right-
hand side reflect flowering and seed production (see,
e.g., Rees and Ellner, 2009). However, with trees, as in
our FIA data set, seeds are not monitored. Hence, the
recruitment simply describes the diameter intensity for
new trees in year t + 1. 
 is the expected influx in year
t + 1 and gt is a diameter density on ỹ = y − L (since
all new recruits to our point patterns are at least size L

in the year they arrive), which is assumed to be an ex-
ponential distribution translated to [L,∞). We assume
influx declines with γt,· due to reduced availability of
resources and consider the form

log
(γt,·) = δ0 − δ1γt,·(12)

with δ0 and δ1 both nonnegative.
With the resulting kernel inserted into (10), integrat-

ing over y, we obtain

γt+1,· = (
q(γt,·) + 
(γt,·)

)
ezT

t β × γt,·,(13)

which clarifies how the expected number of individuals
changes from time t to time t + 1. Evidently, we can
propagate (13) across t to learn about the behavior of
population size over time.

Returning to (3), we approximate the stochastic inte-
gral with a Riemann sum. We divide the interval [L,U ]
into a fine grid consisting of B cells of equal length
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FIG. 7a. Posterior mean (x) and 95% CI for the estimated per-plot abundance for ACRU for nonempty climate bins obtained for years
2007 through 2010. The observed per-plot abundance for the corresponding climate bins are overlaid (o). The bins are indexed on the x-axis
following Figure 4.

with the centers given by x∗
j . We assume that the inten-

sity is constant within each cell and that the centers, x∗
j ,

remain fixed across all of the time periods. The length
and cell level intensity for cell b are denoted by d and
λt (b);b = 1, . . . ,B , respectively. Then the operational
likelihood becomes

T∏
t=1

[
exp

(
−

B∑
b=1

λt (b)d

)
B∏

b=1

[
λt (b)

]ntb

]
,(14)

where ntb is the number of points in cell b in year t .
As noted above, we assume ft (y − x;μt, σ

2
t ) =

φ(y − x;μt, σ
2
t ) and gt (y;ηt ) = ηte

−ηt (y−L), y >

L. For the forms in (11) and (12), imposing priors

on q(γt,·) and 
(γt,·) requires specifying priors on
Q0,Q1, δ0 and δ1, respectively. We interpret Q0

1+Q0
as

the survival probability when the population size tends
to 0 and δ0

1+δ0
as the replacement rate when the popula-

tion size tends to 0. We can roughly interpret Q1 to be
the global survival probability of the species and δ1 to
be the average rate of influx shown by that species.

Q0,Q1, δ0 and δ1 are not well identified. In fact,
from (13), the sum q(·) + 
(·) is well identified but
not its components. Estimation of q(γt,·) and 
(γt,·)
requires using knowledge of the ecological processes
driving the survival and influx for the population. Ac-
cording to the species, we assume a known upper
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FIG. 7b. Posterior mean (x) and 95% CI for the estimated per-plot abundance for LITU for nonempty climate bins obtained for years
2007 through 2010. The observed per-plot abundance for the corresponding climate bins are overlaid (o). The bins are indexed on the x-axis
following Figure 4.

TABLE 2
Posterior summary of model parameters for ACRU and for LITU.

Posterior mean and 95% equal tail credible intervals provided

Posterior summary Posterior summary
Parameters for ACRU for LITU

Q1 0.08 (0.009, 0.19) 0.06 (0.0052, 0.099)
σ 0.38 (0.08, 0.49) 0.45 (0.28, 0.72)
δ 0.19 (0.002, 0.47) 0.16 (0.001, 0.47)
η 0.08 (0.018, 0.14) 0.07 (0.017, 0.15)
βintercept 0.0746 (−5.16, 5.02) 1.96 (−5.90, 10.06)
βtemp 0.02 (−0.28, 0.30) −0.16 (−0.59, 0.24)
βprecip 0.0023 (−0.0019, 0.0059) 0.0014 (−0.0043, 0.0061)

bound of the survival and recruitment function which
are achieved when γt,· = 0. Solving these boundary
conditions, we obtain the values of Q0 and δ0 and
do not estimate them as part of model fitting. Q1
and δ1, on the other hand, are estimated as a part
of fitting using an additional constraint. Let ρt+1,t =
(Nt+1 − Nt)/Nt , t = 0,1, . . . , T − 1, where Nt is the
total observed population size in year t . Then ρt de-
notes the relative change in population size in two
consecutive years. To induce identifiability, we im-
pose that q(γt,·) + 
(γt,·) ∈ (1 − maxt (ρt+1,t ),1 +
maxt (ρt+1,t )). The priors on Q1 and δ1 are chosen
such that this constraint is satisfied.
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The β’s are well identified since they are regression
coefficients associated with time varying covariates zt .
Hence, we impose a vague Normal(0,100) prior on
each component of β independently.
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