
Accepted Manuscript

Process modeling for soil moisture using sensor network data

Souparno Ghosh , David M. Bell, James S. Clark, Alan E. Gelfand,
Paul Flikkema

PII: S1572-3127(13)00063-4
DOI: http://dx.doi.org/10.1016/j.stamet.2013.08.002
Reference: STAMET 424

To appear in: Statistical Methodology

Received date: 6 June 2012
Revised date: 8 July 2013
Accepted date: 1 August 2013

Please cite this article as: S. Ghosh, D.M. Bell, J.S. Clark, A.E. Gelfand, P. Flikkema, Process
modeling for soil moisture using sensor network data, Statistical Methodology (2013),
http://dx.doi.org/10.1016/j.stamet.2013.08.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.stamet.2013.08.002


Process Modeling for Soil Moisture using
Sensor Network Data
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Alan E. Gelfand, and Paul Flikkema †

Abstract
The quantity of water contained in soil is referred to as the soil

moisture. Soil moisture plays an important role in agriculture, per-
colation, and soil chemistry. Precipitation, temperature, atmospheric
demand and topography are the primary processes that control soil
moisture. Estimates of landscape variation in soil moisture are limited
due to the complexity required to link high spatial variation in mea-
surements with the aforesaid processes that vary in space and time.
In this paper we develop an inferential framework that takes the form
of data fusion using high temporal resolution environmental data from
wireless networks along with sparse reflectometer data as inputs and
yields inference on moisture variation as precipitation and tempera-
ture vary over time and drainage and canopy coverage vary in space.
We specifically address soil moisture modeling in the context of wire-
less sensor networks.
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1 Introduction

The quantity of water contained in soil is referred to as the soil moisture. Soil
moisture plays an important role in agriculture, percolation, and soil chem-
istry. Competition for soil moisture determines the structure and diversity
of ecosystems, including variation across landscapes and over time (Korstian
and Coile [18], Barton [2], Coomes and Grubb [6]). Precipitation inputs
and atmospheric demand contribute unevenly to soil moisture additions and
losses (Sturm et al. [25]). Topography controls spatial redistribution through
drainage, and moisture is returned to the atmosphere through transpiration.
Taken together these processes are responsible for diverse gradients in veg-
etation structure and composition across landscapes. Although these basic
relationships have long been known, estimates of landscape variation in soil
moisture are limited due to the complexity required to link high spatial varia-
tion in measurements with these processes that vary in space and time (Katul
et al. [16]).

The contribution of this paper is to develop an inferential framework for
soil moisture variation that takes, as its primary data source, environmen-
tal measurements from a wireless network as precipitation and temperature
vary over time and drainage and canopy coverage vary in space. We fuse
this with data from a portable data collection device. Jointly, we develop
a dynamic nonlinear state space model driven by a latent specification for
the foregoing processes. We employ a calibration model for the network data
and a measurement error model for the data from the portable device. Our
flexible stochastic framework merges often-used descriptive summaries of soil
moisture with the more theoretical approach based upon partial differential
equations. The result is the opportunity to carry out full inference with
associated uncertainty for the soil moisture process. This mechanistically
motivated statistical framewrok is similar in spirit to the methodolgies de-
veloped in Berliner [3], Wikle [27], Fuentes and Raftery [12]. A substantial
challenge is that the soil moisture levels over time arise as a result of three
primary processes: precipitation, drainage, and transpiration. We rarely ob-
serve the first at ground level in the forest and we never observe the second
or third, rendering it difficult to allocate measured levels to these activities.
A further challenge in working with such models is the high level of noise
and the lack of calibration in the sensor network data. A useful assist is
provided by the strong predictability of soil moisture behavior in the absence
of a precipitation event.
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The processes that control soil moisture change have long been known.
Precipitation adds soil moisture up to a saturation level, at which point pore
spaces are filled. Rapid drainage of moisture in excess of capillary forces
occurs above field capacity (a one dimensional conceptual notion given as
a soil moisture level). Subsurface inter-flow follows topography and directs
moisture from high to low elevation (Western et al. [26], Qiu et al. [23],
Penna et al. [22]). Below field capacity, moisture is withdrawn at a slower
rate, depending on exposure to radiation, by evaporation and through the
transpirational stream (Korstian and Coile [18], Kleb and Wilson [17]). Tran-
spiration provides a conduit from soil to atmosphere at loss rates that depend
on availability of moisture in the soil and atmospheric demand. As soil mois-
ture approaches the wilting point (again, a conceptual soil moisture level),
plants can no longer extract it. The rate of depletion varies with depth,
with shallow layers reaching wilting point first and transpiration depending
increasingly on deeper moisture stores (Sturm et al. [25]). Figure 1 visually
describes the operation of transpiration and drainage with respect to wilting
point and field capacity.

Elements for a minimal process model include several variables that must
be measured (soil moisture, precipitation, temperature) and parameters for
the relationships between them. These parameters arise from the regression
specifications but also include the unknown field capacity and wilting point.
Despite the general awareness of the important relationships, we are aware
of no stochastic models that coherently connect them with the uncalibrated
and highly variable soil moisture data.

To reiterate the inference challenge, these processes are only crudely de-
scribed by simple models and depend on many sources of variation that can-
not be measured. Measurements of soil moisture can vary at spatial scales
as small as meters (Entin et al. [9], Zhou et al. [28]). Drainage rates de-
pend on topographic variation, but water movement through soil depends on
heterogeneity at scales that cannot be fully quantified. Transpiration varies
spatially due to soil and vegetation heterogeneity. Due to the high cost of
long-term monitoring, soil moisture measurements typically come from un-
evenly spaced probes under which spatial or temporal extrapolation is done
empirically (Junior et al. [14], Zhou et al. [28] ), i.e., without benefit of data
on the processes that control it - temperature, precipitation, topography, and
vegetation cover.

Furthermore, observation of soil moisture is, itself, a difficult task due to
technology and high spatio-temporal variability. Conventional soil moisture
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data collection is often done using a portable Time Domain Reflectometer
(TDR) but at few locations and at low temporal resolution. Wireless sens-
ing networks are employed in this study to provide data collection at high
temporal resolution. However, they introduce new problems in terms of, for
example, disruption due to animal movement, lack of calibration, and sen-
sor failure (battery failure, transmission failure, suppression of transmission)
(Clark et al. [5]). Here, we propose a fusion in order to work with both
sources of collection, accommodating the misalignment in time scales for the
collection.

In Section 2 we briefly describe the two main current approaches in the
literature for modeling soil moisture and how our methodology differs from
but, in fact, merges these approaches. Section 3 provides a description of the
sensor networks deployed to monitor soil moisture. The posited model and
the associated computational issues are discussed in Section 4. We apply
our model to daily average soil moisture in Duke Forest observed in the year
2009. The performance of our model and associated inference is described
in Section 5. The final section summarizes the findings of this study, notes
some caveats, and provides direction to future research.

2 Background and modeling motivation

Most soil moisture studies provide descriptive statistics with respect to en-
vironmental controls, such as topography, precipitation, vegetation (Char-
pentier and Groffman [4], Famiglietti et al. [11], Crow and Wood [7]). An
alternative path focuses more on mathematical formulations for dynamic pro-
cesses. For example, Oldak et al. [21], and references therein, promote spec-
tral scaling theory for statistical estimation of the variability in soil moisture
at spatial scales. Katul et al. [15] develop a conservation equation model for
soil moisture variability using a partial differential equation (PDE) approach.
Rodriguez-Iturbe et al. [24] develop a model based on a stochastic differential
equation for temporal dynamics of soil moisture. Albertson and Montaldo
[1] also use a PDE based conservation equation model for soil moisture, but
in addition obtain covariances between moisture fields and land surface flux
fields and thereby develop a full fledged predictive framework for variation
in soil moisture. Studies such as Junior et al. [14] and Zhou et al. [28] use
kriging algorithms to make spatial and/or temporal prediction of soil mois-
ture but ignore processes like temperature, precipitation and topography that
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control it.
To merge the descriptive statistical approaches with the process-based

approach, we propose a hierarchical nonlinear state-space model that cap-
tures the temporal dynamics of soil moisture in response to environmental
controls. We assume that the true soil moisture content at a given point in
time is an unknown state variable. The large number of processes contribut-
ing to the soil moisture dynamics and the uncertainty associated with them
motivate us to assume a state space model for the evolution of the true soil
moisture. This evolution is governed by a stochastic differential equation.
The motivation for the stochastic differential equation is based on the rudi-
mentary notion that the change in soil moisture reflects what goes in and
what comes out. What comes in is precipitation. What goes out is captured
in two terms, drainage above field capacity and and transpiration above the
wilting point. In generic terms, we would have the stochastic differential
equation,

dm(t) = (Prec(m(t); t)− Drain(m(t); t)− Trans(m(t); t))dt + σdB(t). (1)

Here m(t) is the true soil moisture at time t, with Prec, Drain, and Trans
being the precipitation, drainage and transpiration components, respectively,
and B(t) being Brownian motion with variance 1. Conceptually, we view soil
moisture at a location as belonging to [0, 1] since it is typically thought of as
a proportion, i.e., volume of water per total volume. (In fact, we cannot do
better since we never actually observe an absolute soil moisture.) Hence, we
scale the foregoing terms to this interval.

We make the model explicit through specification of the component terms
which attempt to be process-driven. We also specify the model at sampling
site level. At site i, we take

Preci(t) = g(Pi,t; hi), (2)

where g is an increasing function in P on [0, 1], Pi,t is the precipitation at site
i at time t, hi ∈ R+ scales the precipitation according to its units and adjusts
locally for canopy interception at site i. In fact, we set Preci(t) = (1−e−hiPi,t).

We take
Draini(t) = αi(mi(t)− fci)

θfc

+
. (3)

This form implies hard thresholding for drainage, i.e., that it only occurs
when m is above field capacity, fc. Further, the form is allometric with a local
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scale (αi ∈ [0, 1]) and field capacity but a common power θfc which controls
the rate of drainage. As noted above, since we never measure drainage, it
will be difficult to learn about a more complex specification for it.

Lastly, we take

Transi(t) = f(zi,t)(mi(t)− ωpi)
θωp

+
. (4)

This form also introduces hard thresholding, implying that transpiration
only occurs when m is above the wilting point, ωp. Once again θωp con-
trols the amount of transpiration above the wilting point. It provides an
allometric form with a local wilting point and introduces f , a monotone
function on [0, 1], which we take to be the inverse logit and enables scal-
ing. We do the scaling locally, linking to local temperature.Here, f(Ti,t) is
a local regression in temperature at site i at time t, Ti,t. Altogether, we
set f(Ti,t) = (exp(β0,i + β1,iTi,t))/(1 + exp(β0,i + β1,iTi,t)). Again, since we
never measure transpiration, it will be difficult to criticize this specification
for it. The line diagram in Figure 1 clarifies the behavior of drainage and
transpiration relative to ωp and fc.

The introduction of the f term in (4) is novel in the soil moisture litera-
ture. Most of the studies (Albertson and Montaldo [1], Rodriguez-Itrube et
al. [24]) use linear terms to describe covariate effects. The two fold intuition
behind the inclusion of the inverse logit in our model is: (i) the soil moisture
readings are scaled to lie in the interval [0,1] so that the logit term scales the
right hand side of the (1) to match the scale of the observed soil moisture, (ii)
it allows us to preserve monotonicity in multiple dimensions with potential
interactions.

In the sequel, we set θωp = 1 and θfc = 3. Fixing θωp = 1 arises due to
identifiability problems between this power and the regression for f ; fixing
θfc = 3 is motivated by exploratory data analysis discussed in Section 4.2
below.

Inserting these forms into (1) implies the assumption that mi(t) exhibits
complex drift but constant volatility. The dependence on elevation and
canopy gap status can be introduced in an empirical fashion, to allow for
the fact that drainage depends on topography, and transpiration rates are
affected by the canopy. Here, we simply handle this by labeling and modeling
the sites individually. We are ignoring depth in our model; this is usually
justified because, typically, rocky substrate prohibits sampling at depth.

We apply a first order Euler discretization and obtain the working model
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for the true soil moisture as

mi,t+∆t = mi,t+{(1−e−hiPi,t)−f(zi,t)(mi,t−ωpi)
θωp

+
−αi(mi,t−fci)

θfc

+
+ǫi,t}∆t

(5)
where the ǫi,t are pure Gaussian errors with mean 0 and variance σ2

ǫ,i. With
our data, ∆t can be as fine as 2 hours. In fact, with data augmentation
as in (Elerian et al. [8]; Eraker [10]) we can work at even finer resolution.
However, our differential equation is primarily suggestive in order to moti-
vate our discretized model. The differential equation does not reflect diurnal
cycles which are revealed in the data at finer than daily resolution. Hence,
we work at daily scale, acknowledging that capturing diurnal behavior is be-
yond the scope here. Note that in (1) and therefore in (5), we are modeling
conditional on precipitation. Models for P (t) are discussed in the literature;
a common choice is a marked Poisson process for occurrence and a Gamma
distribution for the amount of precipitation (Laio et al. [19], [20]). How-
ever, we are not interested in modeling precipitation here. Rather, we treat
it as a covariate, fixing it at observed values. Besides precipitation, other
prominent factors that add uncertainty in the soil moisture dynamics are air
temperature, light availability (which affects the evapotranspiration) and soil
characteristics (which affect interception and drainage). Were data available
on the latter variables we could attempt to enrich our specification.

As noted above, we have two observational sources to provide the soil
moisture measurements to inform about our assumed latent true process
model in (1). One is the data provided by the sensor network, which requires
calibration. The other is available through the TDR and is assumed to be
accurate up measurement error.

3 Data description

This study used a subset of the data recorded as part of a wireless sensing
and relay device network (WiSARDnet), first deployed in the Duke Forest
in 2005. Two of the WiSARDnet deployments are located in a mature de-
ciduous forest stand located in the Eno Division of the Duke Forest, Orange
County, NC (35052’ N, 80000’ W). The study area is characterized by rolling
topography, with an elevation of approximately 130 m above sea level. In-
dividual WiSARDs were located along a topographic gradient from a wet
riparian area occurring along water courses to a dry rocky hilltop. Elevation
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difference between the riparian area and hilltop was more than 40 m. In
addition, experimental forest canopy treefall-gaps were created in January,
2009, by pulling down all trees within 15m of four of the WiSARD nodes.
The forest is composed of eastern deciduous hardwood tree species with a
variety of overstory tree species and an understory that is relatively sparse.

Measurements from the WiSARDnet deployment in the Duke Forest dur-
ing the period March 18, 2009 through December 8, 2009 include volumetric
soil moisture in the upper 10 cm of mineral soil (mm3/mm3), precipitation
(mm), and ambient air temperature (0C). These are the sensor data soil mois-
ture measurements; they are taken every two hours at each site by each of
two EC-20 soil moisture probes (Decagon Devices, Inc., Pullman, WA, USA).
There are 16 sites altogether. Transmission issues arise - measurements sent
but not received at the gateway and measurements which arrive corrupted
so, as a result, across these sites there were approximate 4% missing or un-
observed data. We have retained 14 of them, deleting the site with no TDR
data. Four of the sites (WiSARD id: 133, 135, 141, 152) are gap sites; the
remainder (WiSARD id: 146, 148, 151, 156, 157, 181, 301, 302, 303, 509)
are understory. Spot measurements at 2-4 week intervals using the portable
time-domain reflectometer (TDR; HydroSense, Campbell Scientific, Logan,
UT, USA) also record volumetric soil moisture in the upper 10 cm. Pre-
cipitation was measured using a Vaisala WXT510 weather station (Vaisala,
Vantaa, Finland) located atop a 30-m tower, recorded by a WiSARD, and
transmitted to the base station. Air temperature was measured at a height
of one meter at every WiSARD, using thermocouples, and the average daily
air temperature was used in the model.

4 The hierarchical state space model

4.1 Full model specification

In this section we provide a detailed description of a state-space fusion model
for soil moisture which is driven by (5). It captures assimilation between sen-
sor network data and TDR data with the former providing the predominance
of the data. The locations are widely separated from each other relative to
the scale of soil variability. Preliminary exploration of association between
sites suggested that there was no reason to introduce spatial dependence.

Let wij,t be the soil moisture recorded by the jth probe (j =1, 2) at
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location i, i = 1, 2, ..., n at time t, t = 1, 2, ..., T . As noted below (1), since
soil moisture is typically thought of as a proportion, we scale wij,t at the
outset so that the measurements lie between 0 and 1. (In fact, the probes
record a proxy which is converted to a soil moisture value and then scaled.)

We assume that the wireless data at site i is related to true soil moisture
at i via the model

wij,t = a0,ij + a1,ijmi,t + ǫw,ij,t (6)

with ǫw,ij,t ∼ N(0, σ2
w,i). That is, we have a calibration model that allows for

additive and multiplicative bias.
Next, let vil,t, l = 1, 2, ..., L denote the lth replicate of the TDR measure-

ment of soil moisture taken at location i at time t. Once again we scale vil,t

such that it lies between 0 and 1. We relate these TDR data to the true soil
moisture at i via the measurement error model given by

vil,t = mi,t + ǫv,il,t (7)

where the error term ǫv,il,t ∼ N(0, σ2
v,i). We note that, since the TDR data

is measured at locations that can be several meters from where the probes
are and mi,t is assumed to be the true value at the site of the probes, the
measurement error in the TDR data is expected to be larger than if the latent
m was at the location of the TDR measurement. (The reader may suggest
that therefore a calibration model for the TDR data might be needed as well.
However, two calibration models can not be identified so, we assume that the
discrepancy is entirely pure error.) A related concern is that, according to
the uncertainty in ǫw relative to that in ǫv, we can have the two data sources
exert relatively more or less influence on the trajectory of the predicted m’s.
We can experiment with sensitivity to priors on the variances of these two
errors but, in the end, faith in one source relative to the other will not be
a statistical decision. Finally, (6) and (7) provide the observational or first
stage for our state space model while, again, (5) provides the transitional or
second stage of the model.

4.2 Exploratory data analysis

We describe brief exploratory data analysis with regard to choice of θfc.
Again, let wij,t be the soil moisture recorded by the jth probe of sensor at
location i at time t so that wi,t = (wi1,t + wi2,t)/2 is the average soil moisture
recorded by the sensor at location i at time t. Then, viewing (5) in terms of

9



the w’s rather than m’s, we see that the difference (∆wi,t = wi,t+∆t − wi,t )

has a log-linear relationship with Pi,t and linearly related to w
θfc

i,t . So, we first
regress the 1/ log(1 − ∆wi,t) obtained at each location on the Pi,t. Then we

regress the residuals on w
θfc

i,t for various values of θfc. The value of θfc that
yields the maximum likelihood (appropriate since all the competing models
have same number of parameters) can be taken as an initial estimate of θfc.
Figure 2 shows the scatter plot of the residuals (obtained from regressing
∆wi,t on Pi,t) against the wi,t for four of the sites (WiSARD id 133, 152 and
181 and 302). Despite a large amount of noise, a non-linear relationship is
suggested indicating, θfc should not be taken to be 1.

Minimum BIC is obtained for θfc = 3. The fitted curves obtained by
regressing the foregoing residuals on w3

i,t, for the same four sites mentioned
above, are overlaid on Figure 2.Thus, the EDA indicates that for θfc = 3
will provide a satisfactory choice for the proposed state model (5). However,
below we fit the model for θfc = 1, 2, 4, 5 as well and see how each of these
models performs on a test data set, choosing the one with best out-of-sample
predictive performance.

4.3 Priors

To complete the hierarchical structure we specify the following priors for the
parameters. All are quite vague.

(αi) ∼ N(0, 1)I(0 < α < 1), ∀i
hi ∼ N(0, 1)I(hi > 0), ∀i

(β0,i, β1,i) ∼ N(0, 100× I2)∀i
(a0,ij , a1,ij) ∼ N(0, 100× I2)

ωpi ∼ Uniform(0.02, 0.35), ∀i
fci ∼ Uniform(0.20, 0.70), ∀i
σ2

ǫ,i ∼ Gamma(2, 0.05)

σ2
w,i ∼ Gamma(2, 0.05)

σ2
v,i ∼ Gamma(2, 0.05)

Since the TDR measurements are assumed to be well-calibrated and, since
they are used extensively, we have available a fairly precise estimate of the
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variation present in those measurements. Hence we center the variance of
ǫv,il,t about this estimate and do not allow it vary widely about the center.
We also center the variance ǫw,ij,t about 0.1 and do not allow its variance
to be too large in order to preserve scaling of wij,t between 0 and 1. Since
ωpi and fci are not well identified, we rely on informative priors to en-
able their estimation. The scaling of wij,t and the weak identifiability of
ecological parameters make the model sensitive to prior specification. As
indicated from Section 3 we first fixed θfc = 3 and carried out the analysis.
Then, we fitted the model for θfc = 1, 2, 4, 5 and compared their predictive
performance on a hold-out data set. Let Dt denote the values of the WiS-
ARD observation, {wij,1, ..., wij,t} and the TDR observations {vil,1, ..., vil,t}
available up to time t and Θ = [α,h, β, a0, a1, ωp, fc, θfc] be set of all the
model parameters, with h = [h1, ..., hn], β = [β0,1, β1,1..β0,n, β1,n], a0 =
[a0,11, a0,12..., a0,n1, a0,n2], a1 = [a1,11, a1,12..., a1,n1, a1,n2]. Then, given the in-
formation set Dt and Θ, the joint full conditional distribution of the state
vector mi = {mi,1, mi,2, ..., mi,T} is given by

p(mi,T |DT , Θ)×
T−1∏

t=1

p(mi,t|mi,t+1, ..., mi,T , DT , Θ)

∝ p(mi,T |DT , Θ)×
T−1∏

t=1

p(mi,t|mi,t+1, Dt, Θ)

∝ p(mi,T |DT , Θ)×
T−1∏

t=1

p(mi,t+1|Dt, Θ)p(mi,t|Dt, Θ) (8)

The forward filtering density in (8), p(mi,t|Dt, Θ) ∝ p(mi,t|Dt−1, Θ)×∏
j p(wij,t|mi,t,

Dt−1, Θ)× ∏
l p(vil,t|mi,t, Dt−1, Θ), is Gaussian with mean Viνi and variance

Vi where,

V −1
i =

1

σ2
ǫ,i

+
1

σ2
w,i

∑

j

a2
1,ij +

nv,i

σ2
v,i

νi =
m∗

i,t

σ2
ǫ,i

+
1

σ2
w,i

∑

j

a1,ij(wij,t − a0,ij) +
1

σ2
v,i

∑

l

vil,t

with

m∗
i,t = mi,t−1 − f(zi,t)(mi,t−1 − ωpi)

θωp
+

− αi(mi,t−1 − fci)
θfc

+
+ (1− e−hiPi,t).
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Then the state variables are sampled from the target density (8) using a
Metropolis step. In order to obtain mi,ts in the region where wij,ts are not
observed, we treat the missing wij,t as unknown and update them during the
model fitting along with the model parameters Θ.

4.4 Cross validation

In order to assess the performance of the model, we perform a cross-validation
on out-of-sample data points. That is, we do not know the true m’s so we
can only validate by holding out observed w’s. The posterior predictive
distribution required to perform this validation is obtained in the follow-
ing fashion: Let w∗

t denote all the missing WiSARD data w∗
ij,t up to time

t, wt = [w11,1, w12,1...wn1,t, wn2,t, v11,t, ..., vnL,t] denote all the WiSARD and
TDR data observed up to time t and w denote the entire set of the WiS-
ARD and TDR data in the training data set. For a new time point t + 1, we
have wij,t+1|mi,t+1, Θ ∼ N(a0,ij+a1,ijmi,t+1, 1) and the process model is speci-

fied in (5). Let m
(1)
i,t+1, ..., m

(Bm)
i,t+1 ,w

∗(1)
t , ...w

∗(Bw)
t , Θ(1), ..., Θ(BΘ) be the samples

generated from the full posterior distribution π(mi,t+1,w
∗
t , Θ|w). Then, the

posterior predictive density of wij,t+1 is given by

π(wij,t+1|wt) ∝
∫

π(wij,t+1|mt+1, Θ,w∗
t ,wt)π(mt+1,w

∗
t , Θ|wt)dmt+1 dΘ dw∗

t

(9)
Under model fitting using MCMC, the posterior predictive distribution

in (9) is sampled by composition. Once we have samples from the posterior
distribution of Θ and w∗

t , we use the following algorithm to draw samples
from the posterior predictive distribution (9).

1. Draw a sample θ(k),w
∗(k)
t from their posterior distribution.

2. Draw a sample of m
(k)
i,t+1 from its posterior distribution (8).

3. Finally draw w
(k)
ij,t+1 from N(a

(k)
0,ij + a

(k)
1,ijm

(k)
i,t+1, 1).

5 Analysis of the Duke Forest data

To illustrate the performance of the posited hierarchical state-space model for
soil moisture, we apply it to average daily soil moisture readings in the Duke
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Forest as obtained from the WiSARD network and the TDR measurements
during the growing season, from March 18, 2009 to December 8, 2009. We
have run a single long MCMC chain. We generated 50000 MCMC samples
and discarded the first 10000 as burn-in. Convergence was first assessed
visually by looking at the trace plot and subsequently assessed quantitatively
using Geweke’s criterion. (Geweke, [13]). The average acceptance rate is
around 40%. The computation time is roughly 2 hours. The results obtained
from analyzing these data are summarized below.

As noted in Section 4.1, an important point in providing this analysis is
the tension between the two data sources. That is, there is much more sensor
data than TDR data. However, in principle, the TDR data is calibrated to
the truth. How do we determine the appropriate balance? With a tight
variance on the TDR data, the predictions will track the TDR; with a loose
variance, the predictions will track the sensor data. We know that the sensor
data can be unreliable due to the challenges of wireless sensor data collection
implying substantial uncertainty. However, we also see that, at times, the
TDR does not seem to respond to precipitation events (see Figure 5), as
occurs when rainfall is intercepted by the canopy and does not penetrate to
sensor depth. If the mi,t above are viewed as the true values at the sensor
probes, then we can assume a larger error for the TDR measurements since
they are not measured exactly at the probe locations.

Figure 3a shows the plot of the raw soil moisture measurements wij,t

(scaled by 100) for the aforementioned 4 nodes and for the available days.
It also shows the plot of the TDR data (scaled by 100) observed during the
period covered by the raw data. There is very little spatial variability of
temperature and precipitation over the study region. Hence we propose to
use the global values of these covariates, that is, we assume that temperature
and precipitation vary with time only and not vary from node to node. So,
we replace Pi,t and Ti,t is (2) and (4) by Pt and Tt, respectively. Figure 3b
shows the plot of total daily precipitation (Pt) observed over the study region
during the period covered by the raw soil moisture data. We see directly the
response of soil moisture to precipitation. Figure 4 shows the plot of the
daily average air temperature over the study period.

The plot of the raw soil moisture data found in the training set wij,t and
the estimated true measurements, mi,t, for θfc = 3 along with the TDR data
for four of the sites- two gap sites (WiSARD id: 133, 152) and two understory
sites (WiSARD id: 181, 302)- are shown in Figure 5. Note that the WiSARD
sensors tend to provide much higher soil moisture measurements than the
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TDR device, illuminating the need for calibration. Overlaid is the plot of
daily precipitation amount (in cm). The posterior mean and the 95% credible
interval for the parameters estimated from the training set for gap sites and
understory sites are given in Table 2a and Table 2b, respectively.

We consider the posterior predictive distributions of the wij,t+1 corre-
sponding to the hold-out data set using the method described in Section 4.4.
In Figure 6 we plot the actual observed values of the WiSARD measurements,
belonging to the hold-out dataset for θfc = 3 along with their predicted val-
ues and the associated 95% predictive interval. We see that, generally, the
prediction is good.

The value in the model fitting is that it allowed us: (i) to translate soil
moisture dynamics from the sensor probes to the common scale represented
by a portable standard, (ii) to gap-fill sequences through predictive distri-
butions from the fitted state space model, and (iii) to infer the effect of
temperature on transpiration rate in a dynamic model that contains process
error and location-specific observation errors. Sensors can vary substantially,
and they can drift between calibration events. By fusing data models for sen-
sors at fixed locations with the portable standard we sidestep the calibration
problems of individual sensors. Our latent soil moisture variable responds to
the process model and wireless data, as calibrated by the portable standard.

Again, sensors fail frequently for a variety of reasons. Gap filling tends to
be done on an ad hoc basis for most ecosystem data streams. Our model al-
lows the latent soil moisture variable to be predicted by when sensors fail; our
approach can be used fill out discontinuous data streams, with uncertainties,
all stemming from data and process understanding.

The differences between gap and understory that emerge during the grow-
ing season (Figures 3a and 6) are attributed by the model to temperature
effects on transpiration. The large positive temperature effects in the forest
understory (e.g., β1 estimates in Table 2b), where transpiration rates are
high, are not identified in gap sites (Table 2a). More broadly, the integration
of process-level understanding from the tradition of differential equations,
with the inference possible under the hierarchical structure contributes to
the objectives of environmental inference, i.e., estimation and prediction of
states and quantification of the role of important input variables.
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6 Summary and extensions

On the one hand, mathematical models of soil moisture have not been de-
signed to accommodate uncertainty in process, data, and spatio-temporal
variation. On the other hand, simple kriging of point measurements has been
difficult to square with processes of transpiration, precipitation, and rainfall.
The latter is critical for prediction in time and in space, for example, gap
filling. Our novel data fusion model for soil moisture assimilates sensor net-
work data with measurements from a portable TDR device. We formulate a
highly nonlinear state space model motivated by a stochastic PDE like those
used to relate soil moisture to dynamic processes. At the observation level,
the sensor data need calibration while the TDR data introduce measurement
error. We have fitted this hierarchical model using MCMC and validated it
using hold-out data.

Again, we remark that we have specified a differential equation model pri-
marily as motivation for the discretized-in-time analysis that we presented.
Investigation at finer than daily scale would require modification of the mod-
eling to capture diurnal behavior. This also discourages introduction of latent
variables to achieve finer temporal resolution under the daily resolution for
the data. We have alluded to the issue of prior sensitivity in terms of balance
between the two data sources. As in any data assimilation approach, more
confidence in one source relative to another will be reflected in more fidelity
of predictions to that source. We have noted that soil moisture is difficult
to measure. Hence, though we can envision richer model specifications, we
would need better data than we currently have to justify pursuing them.
Lastly, we note that the posited model is primarily predictive in nature, so
inference about the model parameters is not key. Furthermore, we acknowl-
edge that we need informative priors on key parameters. Consequently this
model has not been fitted to simulated examples in order to study parameter
inference.

Future work will find us looking into different data sources. One option
is to adapt our approach to a manipulated setting, in particular a setting
involving warming chambers. This will provide different temperature trajec-
tories that are elevated compared to those in our current analysis and can
further illuminate soil moisture behavior. Another problem involves seedling
demography. Health of seedlings is very sensitive to available water; linking
soil moisture at fine scale to seedling performance would be valuable.
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Tables and Figures

Table 1
MSPE obtained for various values of θfc

θfc MSPE
1 0.00150
2 0.00081
3 0.00059
4 0.00068
5 0.00071

Table 2a
Posterior mean and 95% credible interval for model parameters for

Gap sites
Parameters WiSARD id

node 133 node 152
αi 0.41 (0.03, 0.73) 0.56 (0.02,0.81)
ωpi 0.27 (0.18, 0.34) 0.15 (0.11,0.20)
fci 0.53 (0.45, 0.57) 0.44 (0.40,0.53)
β0,i -12.32 (-29.20, -2.95) -13.82 (-28.83, -4.94)
β1,i 1.12 (-4.78, 9.74) 1.55 (-4.65, 10.00)
hi 0.0021 (0.0001, 0.0047) 0.003 (0.0003, 0.0076)
σ2

ǫ,i 0.0009 (0.0007, 0.0013) 0.0009 (0.0007, 0.0014)
σ2

w,i 0.0015 0.0012, 0.0019) 0.0079 (0.0065, 0.0086)
σ2

g,i 0.0015 (0.0011, 0.0018) 0.0062 (0.0057, 0.0068)
a0,i1 0.203 (0.17, 0.25) 0.157 (0.10, 0.18)
a0,i2 -0.1761 (-0.21,-0.13) 0.045 (-0.01, 0.09)
a1,i1 0.719 (0.63, 0. 78) 0.724 (0.64, 0.82)
a1,i2 1.367 (1.28, 1.40) 0.851 (0.73, 0.91)
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Table 2b
Posterior mean and 95% credible interval for model parameters for

Understory sites
Parameters WiSARD id

node 181 node 302
αi 0.45 (0.24, 0.63) 0.75 (0.41, 0.89)
ωpi 0.14 (0.10. 0.16) 0.13 (0.11, 0.16)
fci 0.29 (0.25, 0.32) 0.28 (0.26, 0.31)
β0,i -3.06 (-11.87, -1.59) -1.51 (-10.30,-0.23)
β1,i 3.96 (1.15, 16.32) 4.36 (1.35, 22.49)
hi 0.0025 (0.0002, 0.0007) 0.0023 (0.0002,0.0073)
σ2

ǫ,i 0.0007 (0.0006, 0.0009) 0.0008 (0.0006, 0.0010)
σ2

w,i 0.0078 (0.0051, 0.0091) 0.0063(0.0055, 0.0074)
σ2

g,i 0.00027 (0.00021, 0.00034) 0.00078 (0.00072, 0.00085)
a0,i1 0.027 (0.015, 0.042) 0.043 (0.029, 0.055)
a0,i2 0.136 (0.11, 0.15) 0.103 (0.07, 0.16)
a1,i1 0.986 (0.87, 1.06) 0.823 (0.76, 0.93)
a1,i2 0.973 (0. 84, 1.08) 1.166 (1.03, 1.24)

Wilting
Point

Field 
Capacity

Transpiration
Drainage

Fig. 1. A line diagram illustrating the operation of transpiration and
drainage with respect to wilting point and field capacity.
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Fig. 2. Plot of the first stage residuals (circles) and the curve fitted to
these residuals (crosses), with θfc = 3, against wi,t corresponding to

WiSARD id’s (a) 133 (b) 152 (c) 181 and (d) 302.
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Fig. 3a. Plot of raw (scaled) WiSARD Fig. 3b. Plot of total daily precipitation
(crosses) and TDR (circles) data amount during the study period

High values of WiSARD observations
mostly correspond to gap sites while

low values mostly correspond to
understory sites
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Fig. 4. Plot of daily-average air temperature
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Fig. 5. Plot of WiSARD (crosses) and TDR (circles) measurements
along with estimated true measurements (solid thick) corresponding to
WiSARD id’s (a) 133 (b) 152 (c) 181 and (d) 302. The figures on the

top panel correspond to gap sites while those below correspond to
understory sites. Overlaid is the plot of precipitation amounts (solid

thin) in cm
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Fig. 6. Plot of observed (crosses) and predicted (circles) wij,t in the
test dataset and 95% predictive interval for θfc = 3 corresponding to

WiSARD id’s (a) 133 (b) 152 (c) 181 and (d) 302. The figures on the
top panel correspond to gap sites while those below correspond to

understory sites.
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