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Population dynamics with regard to evolution of traits has typically been studied
using matrix projection models (MPMs). Recently, to work with continuous traits, in-
tegral projection models (IPMs) have been proposed. Imitating the path with MPMs,
IPMs are handled first with a fitting stage, then with a projection stage. Fitting these
models has so far been done only with individual-level transition data. These data are
used to estimate the demographic functions (survival, growth, fecundity) that comprise
the kernel of the IPM specification. Then, the estimated kernel is iterated from an initial
trait distribution to project steady state population behavior under this kernel. When
trait distributions are observed over time, such an approach does not align projected
distributions with these observed temporal benchmarks.

The contribution here, focusing on size distributions, is to address this issue. Our
concern is that the above approach introduces an inherent mismatch in scales. The re-
distribution kernel in the IPM proposes a mechanistic description of population level
redistribution. A kernel of the same functional form, fitted to data at the individual level,
would provide a mechanistic model for individual-level processes. Resulting parameter
estimates and the associated estimated kernel are at the wrong scale and do not allow
population-level interpretation.

Our approach views the observed size distribution at a given time as a point pattern
over a bounded interval. We build a three-stage hierarchical model to infer about the
dynamic intensities used to explain the observed point patterns. This model is driven by
a latent deterministic IPM and we introduce uncertainty by having the operating IPM
vary around this deterministic specification. Further uncertainty arises in the realiza-
tion of the point pattern given the operating IPM. Fitted within a Bayesian framework,
such modeling enables full inference about all features of the model. Such dynamic
modeling, optimized by fitting to data observed over time, is better suited to projection.

Exact Bayesian model fitting is very computationally challenging; we offer approx-
imate strategies to facilitate computation. We illustrate with simulated data examples
as well as well as a set of annual tree growth data from Duke Forest in North Carolina.
A further example shows the benefit of our approach, in terms of projection, compared
with the foregoing individual level fitting.
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1. INTRODUCTION

The study of population dynamics has a long history in ecology and biology with dy-
namics typically summarized by age, size or stage distributions (see, e.g., Keyfitz and
Caswell 2005 and references therein). Analysis of changing structure requires a transla-
tion of individual level data to the population level. Ecologists and conservation biologists
primarily use matrix projection models (MPM) to make this translation, where stages are
discrete classes of say ages or sizes.1 More recently, the integral projection model (IPM)
(Easterling, Ellner, and Dixon 2000; Ellner and Rees 2006, 2007; Rees and Ellner 2009)
has emerged as an alternative to matrix projection models when investigating continuous
traits, e.g., size, age, mass, leaf length. These models use individual level data to esti-
mate demographic functions, i.e., parametric models for demographic processes specified
in the form of vital rates such as growth, maturation, survival, birth, and fertility which are
incorporated into a redistribution kernel. The term “projection” for these estimated demo-
graphic models refers to iterative projection of this kernel to steady state in order to attempt
to answer questions regarding what would happen. That is, assuming that the kernel yields
a steady state, such forward propagation informs about population statistics, e.g., analy-
sis associated with the long term population growth rate under a time-invariant projection
matrix or kernel. Fitting these models has so far been done only with individual-level tran-
sition data which are used to estimate the demographic functions that comprise the kernel
of the IPM specification. Projection proceeds given the estimated kernel.

The primary perspective of this paper is to argue that such an approach introduces an
inherent mismatch in scales. The redistribution kernel in the IPM proposes a mechanistic
description of population level redistribution. A kernel of the same functional form, fitted
to data at the individual level, would provide a mechanistic model for individual-level
processes. Resulting parameter estimates and the associated estimated kernel are at the
wrong scale and do not allow population-level interpretation. Expressed in different terms,
an individual level model describes the transition of an individual of size x at time t to size
y at time t + 1. It is a conditional specification. As we shall see, an IPM essentially takes a
distribution of sizes of individuals at time t to a distribution of sizes of individuals at time
t + 1. Potential confusion arises because in both cases a kernel function is introduced, i.e.,
a function of x and y. If fitted at the individual level, it describes individual transitions; if
fitted at the population level, it reweights a distribution at time t to get a value associated

1In the literature the terminology ‘matrix population model’ is also widely used, e.g., Caswell (2001). We use the
notation MPM regardless of the choice for P .
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with size y at time t + 1. Why should a reweighting based upon individual level data
provide an appropriate redistribution at the population level? It seems that we should fit a
different model at the latter level. We are dealing with a version of the familiar ecological
fallacy (Wakefield 2009).

As a concrete process-level illustration, consider a density dependent kernel fitted to
growth and survival of individuals. Such a kernel would say that individuals with few
neighbors grow rapidly and vice versa—there is strong density dependence at the indi-
vidual scale. This heterogeneity in local competitive environments is the basis for most
models of coexistence, such as ‘successional niche’ and ‘competition-colonization’. Used
at the population scale, the density dependence embedded in the kernel operates on the ag-
gregate density. But this is not the scale where density dependence locally operates, and it
cannot capture the role of competition. The fact that individuals experience different local
environments—the variation used to fit the kernel—is lost. Instead of capturing this effect,
we impose an unrealistic one: when the average density of the plot increases, all individuals
respond according to the same kernel. This aggregation problem arises frequently in ecol-
ogy, hiding or changing relationships between variables (Clark et al. 2011b). Section 2.2
below further elaborates this scaling issue. Offering a remedy is the primary contribution
of this paper. In brief, we view the observed size distribution at a given time as a point
pattern over a bounded interval. We build a three-stage hierarchical model to infer about
the dynamic intensities used to explain the observed point patterns. This model is driven by
a latent, equivalently, unknown deterministic IPM and we introduce uncertainty by having
the operating IPM vary around this deterministic specification. Further uncertainty arises
in the realization of the point pattern given the operating IPM. We argue that such dynamic
modeling, optimized by fitting data observed over time, will more accurately reveal how
intensities change over time. That is, there is no mechanism in current IPM model fitting
to align projected trait distributions with trait distributions observed over time; the trait
distribution obtained from fitting the individual-level IPM does not capture the evolution
of the trait distribution from one time point to the next. We show below that forecasts with
the latter can drift consequentially compared with those of the former.

We fit the three-stage model within a Bayesian framework. By conditioning on the ob-
served point patterns of sizes, we anchor the parameters of the IPM to the trait distributions
observed over time, ensuring that the estimated model is “scaled” to the observed data. Un-
der the Bayesian framework, full inference is available for all model features—all model
parameters, all demographic models that comprise the IPM, all predictions of interest un-
der the IPM. If we assume a kernel that is constant over time, then with iteration, we can
implement projection, analogous to what is currently done. However, we may prefer time
dependent kernels, introducing time-varying environmental information to better explain
the observed trait distributions.

The fitting only requires marginal point patterns. Apart from a potential data collection
advantage, we assert that this is the appropriate way to fit IPM’s. That is, our modeling
is not a default in the absence of individual level data. Rather, since IPM’s “redistribute”
intensities (not individual transitions) from one time point to the next, we should be fitting
them at aggregated scale, interpreting the kernels at the population scale. If we have in-
dividual transition data, we recommend fitting an individual level model, e.g., a dynamic
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model such as in Clark et al. (2010a) and references therein. An advantage to working
with marginal point patterns is that we need not have observations for all of the years for
which we are fitting the IPM. The years for which data are available are incorporated into
the likelihood to inform about the parameters in the IPM kernel, but the IPM specification
itself can drive the dynamics for years when there are no observations. An implicit assump-
tion is that, within plot, we sample all individuals for the years that we sample; we need
to see the complete point pattern for the plot. This is because the number of individuals
is assumed random when we model the point pattern given the intensity. Our inference
will be at the plot scale. However, since intensity cumulates, we can extrapolate to popula-
tions at larger scales. Furthermore, it may be possible to accommodate partial sampling by
adjusting intensities for sampling effort (see, e.g., Chakraborty et al. 2011).

Not surprisingly, model fitting under our setting is challenging; an explosion of inte-
grations (or sums) arises. However, we show that, in certain cases, moving to the spectral
domain facilitates fitting. Still, fitting is slow, so we offer a approximate pseudo-IPM fitting
approach that runs more quickly and offers the possibility of more flexible choices for the
time-dependent kernels. We develop the foregoing agenda over the next five sections.

The remainder of this introduction provides a brief literature review. MPMs are the most
widely used approach to specify population structure. Given the state of the population at
time t as a vector of binned cell counts, n(t), one multiplies it by a population projection
matrix, A to yield the state of the population at time t + 1;

n(t + 1) = An(t). (1.1)

If the population is classified into age-classes then the projection matrix is the well-known
Leslie matrix. In its simplest form, the projection matrix is assumed to be constant, yield-
ing a linear time-invariant system of difference equations to describe the evolution of the
population. A more general, time-varying difference equation version is obtained when
one allows the projection matrix to vary because of external factors independent of the
state of the population. Further sophistication is achieved when one makes the projection
matrix dependent on the current state of population itself, n(t + 1) = Ann(t). This leads to
a non-linear model termed a density-dependent MPM. Tuljapurkar and Caswell (1997) and
Caswell (2001) discuss the features of all these MPMs in detail. Caswell (2008) provides
a general approach to examine the change in responses of a non-linear matrix population
models to changes in its parameters.

In any event, the MPMs specify the demographic trait in the form of categorical classifi-
cations, so-called stages. In the case of a continuous trait, such as those we have mentioned
above and, in particular, for sizes, the classes are ordinal with definition being somewhat
arbitrary. Easterling, Ellner, and Dixon (2000) and Ellner and Rees (2006) discuss this is-
sue in detail, noting that the IPM is proposed to remove the categorization required under
the MPM approach. Ellner and Rees (2009) remark that “if a trait varies continuously in the
study population, then model it that way using an IPM rather than a conventional matrix
model.”

Using notation from Easterling, Ellner, and Dixon (2000), we denote the continuous
trait by x and the distribution of the trait at time t by n(x, t). The projection matrix
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is then replaced by a projection kernel K(y;x) that describes how population is redis-
tributed/projected from state x at time t to state y at time t + 1. With L and U denoting,
respectively, lower and upper limits for the value of the trait, the resulting model takes the
form

n(y, t + 1) =
∫ U

L

K(y;x)n(x, t) dx, (1.2)

formally specifying an Integral Projection Model (IPM) and yielding a continuous analog
of the MPM. Basic theory for a general class of deterministic IPMs, allowing complex
demography, is presented in Ellner and Rees (2006). They take K as K(y,x; θ) which is
written in terms of parametric specifications for the vital rates. Recent work (Dahlgren,
Garcia, and Ehrlén 2011) models these rates using restricted cubic splines. In Ellner and
Rees (2007) extension is presented to allow time-varying K’s in the form K(y,x; θ(t))

with θ(t) a random parameter vector. Asymptotic behavior under stationary ergodic θ(t)

is developed. Rees and Ellner (2009) offer a more applied development, supplying fixed
and random effects models and showing explicitly that customary growth rate, sensitivity,
and elasticity analysis can be obtained with IPMs. In very recent work, Dalgleish et al.
(2011) incorporate time varying climate information in the projection kernel and Adler,
Ellner, and Levine (2010) develop a multispecies IPM incorporating competition, density
dependence, and spatial structure in their individual level model.

IPMs, whether deterministic or stochastic, are an example of a larger class of models
usually referred to as integro-difference equations (IDEs). These models have the structure,
Wt+1(y) = ∫

D
h(y, x, ; θ)g(Wt(x)) dx. Wt is a stochastic process, and h is a kernel (often

a Gaussian) that describes how the process realization at time t is redistributed to a process
realization at time t + 1. The dynamics are controlled by the properties of the redistribu-
tion kernel. Typically, g(z) is taken to be ρz in the spirit of stationary time series. Richer
choices for h allow the kernel to be local, perhaps θ to be local, and perhaps for the kernel
to change over time. In general, although the IDE equations are quite powerful for describ-
ing complicated ecological processes (Kot, Lewis, and van den Driessche 1996), with the
exception of Wikle and colleagues, e.g., Wikle (2002), Xu, Wikle, and Fox (2005), Hooten
et al. (2007) and Wikle and Hooten (2010) they have not often been applied to data in a
formal statistical framework. A key distinction is that the kernel h in the IDE setting arises
from time discretization of a forward-in-time differential equation while the IPM employs
an h that looks back in time to explain how we got to where we are.

As specified, the IPM above is deterministic, raising the question of where and how
to insert uncertainty. Within the Bayesian framework, a natural choice is to make the pa-
rameters random. To allow for time-varying redistribution kernels, at least two approaches
emerge. The first assumes that a vector of parameters is randomly chosen at each time point
so that Kt takes the form K(y,x; θ(t)). As noted above, this strategy is employed in, e.g.,
Rees and Ellner (2009) where, under parametric modeling for K(y,x; θ), the posterior
for θ provides draws for θ(t). These draws may be interpreted as providing temporal ran-
dom effects rather than parameter uncertainty. A second approach, which we adopt below
(Section 4), is to assume that K is specified as a fixed parametric function but involving
time-varying covariates. That is, Kt takes the form K(y,x; zt , θ) where zt is a vector of
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levels of a suitable set of environmental covariates at time t . This approach can be viewed
as regression modeling for K .

A broader concern involves uncertainty associated with the form of K itself, hence with
the form induced for the n(y, t)’s using (1.2). Working with point patterns for the traits,
we view the outcome of the IPM as a sequence of intensities and so, at time t , we replace
n(y, t) with an intensity function, γt (y). We view the “operating” intensity, λt (y) (i.e.,
the intensity that drives the observed point patterns) as varying around γt (y) in a fashion
described below (Section 4). In other words, insisting that the IPM model is correct (even
with “best” parameter estimates) is too restrictive. It is easier and more direct to specify
uncertainty through the γ ’s than through the K’s. In any event, propagating n’s (for us,
γ ’s) through Kt ’s in (1.2) will not yield explicit forms. In fact, starting at time 0, at time
t we have a t dimensional integration for γt , requiring approximation to enable tractable
computation.

Finally, the format of the paper is as follows. Section 2 fills in the requisite background
on dynamic population models. In Section 3 we discuss types of data and, in particular, the
Duke Forest data used as an example. Section 4 spells out the modeling details. Section 5
discusses computational approximation with simulated examples and the Duke Forest data
analysis in Section 6. Section 7 concludes with a summary and future directions.

2. THE MPM AND IPM APPROACH IN ECOLOGICAL
DEMOGRAPHY

MPM’s and IPM’s have become the techniques of choice for ecological demography.
These models are specified with two indices, one for time, the other for trait level. There
can be continuity or discreteness in time as well as continuity or discreteness in the trait
space. With discrete time and discrete (categorical) trait space we have a MPM; with con-
tinuous time and discrete trait space an ordinary differential equation (ODE); with discrete
time and continuous trait space an integro-difference equation (IDE); and with continu-
ous time and continuous trait space a partial differential equation (PDE). As noted in the
Introduction, IPM models are a subset of the IDE models and, thus, since an IDE can be
developed through discretization of a PDE, similarly it can be the case for an IPM. How-
ever, an arguably useful distinction between IPMs and IDEs is the forward vs. backward
perspective. IDE’s look forward using structured kernels to describe where the process is
going. That is, under time-discretization of a PDE, the forward dynamics induce a redistri-
bution kernel to yield an IDE. On the other hand, IPMs look backward, using structured,
mechanistic, process-driven kernels to describe how the process got to where it is. With dis-
cretization of the trait scale, this distinction is preserved. For the IDE, the kernel becomes
a propagator matrix; for the IPM we obtain a MPM.

2.1. MATRIX PROJECTION MODELS

Matrix projection models are the most widely used demographic approach for struc-
tured biological populations. The population vector n(t) lists the numbers of individuals
in a finite set of categories at time t . Again, the projected population in these categories at
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time t + 1 is given by n(t + 1) = An(t). The Aij give the average per-capita contribution
from individuals in category j at time t to category i at time t + 1, either by survival,
growth, or reproduction. In fact, typically, A is written in the form A = T + F with T de-
scribing transition (survival and growth) and F describing reproduction (fecundity). Under
the model, the stationary behavior of this matrix projection equation is obtained in terms of
the eigenvalues (�i ) and eigenvectors (wi ) of the projection matrix A. The long-term be-
havior of n(t), i.e., the ergodic properties of population growth, is determined by the dom-
inant eigenvalue, max(�i) and associated right eigenvector. Generalization of this simple
MPM to admit variability in survival and fecundity rates over time leads to the stochastic
MPM given by n(t + 1) = A(t)n(t) where {A(t), t = 0,1,2, . . .} is a stochastic sequence
of non-negative matrices. Under suitable assumptions, this stochastic MPM still enables a
dominant eigenvalue that is almost surely constant (Tuljapurkar 1990). Further eigenanal-
ysis of the projection matrix yields a set of population statistics, viz., population growth
rate, damping ratio, reproductive value and so on (Caswell 2001). Evidently, in analyzing
populations using projection with MPMs, estimation of the eigenvalues and eigenvectors
are of critical importance.

In general, when the model is density dependent, i.e., n(t + 1) = Ann(t), the resulting
behavior of the matrix equation cannot be written in terms of eigenvalues and eigenvec-
tors (Caswell 2001, p. 504). Under a simplifying density dependence assumption, one can
obtain the dominant eigenvalue and eigenvector of An using an equilibrium condition. But
when the dependence is complex, an equilibrium solution is extremely difficult to obtain.

If, however, one has a time series of population vectors n(t), without the individuals
being identifiable, a maximum likelihood approach can be used to estimate the elements of
A. Dennis et al. (1995, 1997) achieved this by introducing a stochastic component in the
matrix equation as follows:

n(t + 1) = exp
(
D(t)

)
Ann(t),

where D(t) = diag(d1(t), . . . , ds(t)) are assumed to be drawn from multivariate normal
distribution with mean 0 and covariance �. The resulting log-normal model yields a like-
lihood function which can optimized to obtain the maximum likelihood estimates of the
model parameters. We see that D(t) imposes process after demography.

2.2. THE IPM AND ASSOCIATED PROPERTIES

Here, we investigate the behavior of an IPM as a deterministic specification. In fact,
the form in (1.2) has been referred to as a population-level mean field model, tracking
expected number of individuals and their associated expected state distribution (Ellner and
Rees 2007). The kernel K(y,x; θ) is the IPM analog of the projection matrix A in MPM.
We rewrite (1.2) in terms of intensities, subscripted by time, i.e.,

γt+1(y) =
∫ U

L

K(y;x)γt (x) dx. (2.1)

To give a population level interpretation to (2.1), it may be easiest to think in terms of
intensity elements. That is, γt+1(y) dy = ∫

X
K(y;x)dy γt (x) dx. But then, we see that
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K(y;x)dy γt (x) dx is the expected number of individuals in size interval (y, y + dy) at
time t + 1 from all individuals in size interval (x, x + dx) at time t .

To study the properties of a deterministic specification, we suppress parameters in (2.1).
Let γt,. = ∫ U

L
γt (x) dx, i.e., γt,. is the expected number of individuals at time t . Inte-

grating (2.1) over y from L to U yields γt+1,. = ∫ U

L
K(·, x)γt (x) dx, where K(·, x) =∫ U

L
K(y;x)dy; γt+1,. can be compared with γt,..2 Integrating (2.1) over B ⊂ [L,U ] yields

γt+1(B) = ∫ U

L
K(B,x)γt (x) dx.

The eigenvalue theory for the IPM can be directly connected to that for the MPM
by viewing K(y;x) as a linear operator, i.e., Kh ≡ ∫ U

L
K(y;x)h(x) dx. Then, if � is

the largest eigenvalue associated with K and w(x) is the associated right eigenfunction,3∫ U

L
K(y;x)w(x)dx = �w(y) showing that, at steady state, � is the growth rate and w(x)

(normalized) is the steady state size distribution. As a result, Ktw = �tw. However, for a
given t and an arbitrary initial size distribution γ0(x), Ktγ0 need not be close to �tγ0.

A common mechanistic specification for K , viewing the process at the individual-level,
takes the form

K(y;x) = q(x)f (y|x) + �(x)g(y). (2.2)

These terms are interpreted as follows. The first pair capture survival and growth; q(x) is
the probability of survival of an individual of size x and f (y|x) is the conditional prob-
ability density of size y next year, given current size x of an individual. The second pair
capture fecundity or recruitment (in our Duke forest example below); �(x) is the number
of recruits associated with individuals of size x and g(y) is the probability density of sizes
for the new recruits. In the literature, these components have been modeled at the indi-
vidual level. For instance, individual level data are used to fit a logistic regression for q

and a Poisson regression with log link for �. Also, a Gaussian regression using individual
transitions is used to fit f and an exponential function, using individual seed production,
is used to fit g.

Now, we can explicitly clarify the distinction between current IPM work and our ap-
proach. In the sequel, we still use the form in (2.2) but, as per the clarification above using
intensity elements, we interpret q,f,�, and g so that the resulting K is interpreted as
redistributing the intensity at year t to a new intensity at year t + 1. (See Section 4 below
for details.) Again, we think in terms of population transition, not individual transition.

Inserting (2.2) into (2.1) yields

γt+1(y) =
∫ U

L

(
q(x)f (y|x) + �(x)g(y)

)
γt (x) dx. (2.3)

Under (2.3), we find that γt+1,. = ∫ U

L
K(·, x)γt (x) dx = ∫ U

L
(q(x) + �(x))γt (x) dx. If

q(x) = q and �(x) = �, i.e., constant rates over [L,U ], we obtain γt+1,. = (q + �)γt,. so

2Note that L can be 0 but we must have U < ∞ in order to ensure that the γt ’s are valid intensities. This should
be a mild practical constraint.
3Perron–Frobenius theory tells us that, at this �, w(x) ≥ 0 ∀x.
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q + �, greater than, less than or equal to one determines whether the expected population
size grows, decreases or remains constant. In practice, constant values are not plausible; we
will want forms qt (x) and �t(x) where the dependence on t arises through the introduc-
tion of covariate information at time t as well as, perhaps, through introduction of density
dependence.

Sometimes normalization is introduced into the IPM. One possibility is to replace
K(y;x) in (2.1) with say K(y;x)/K(.;x), a normalized version. This is too restrictive;
it removes the interpretation of γt (x) as an intensity since it imposes γt,. constant over t .
Normalizing γt (x) to the density γ̃t (x) = γt (x)/γt,. is also unattractive since it now nor-
malizes the resulting γt+1(y) by γt,. rather than by γt+1,.. In this regard, one might con-
sider viewing K(y;x) as a conditional intensity on [L,U ] for y at a given x, whence
K(y;x)γt (x) would become a joint intensity over [L,U ]× [L,U ]. This is not appropriate
for our setting. A joint intensity produces (x, y) pairs; we do not impose γt+1,. = γt,..

Note that if K(y;x) is of the form K(y − x) and, formally, we allow the limits of the
integration to expand to (−∞,∞), then γt+1(y) arises as a convolution of K and γt . This
reveals that, if we start with γ0, we will obtain a t-fold integral in order to arrive at γt .
Computation, using discretization, will result in a t-fold sum and will become infeasible.
However, we can take advantage of the convolution representation to work in the Fourier
domain. That is, with tilde denoting the associated Fourier transform, we have

γ̃t+1(u) =
∫ ∞

−∞
e−iyuγt+1(y) dy =

∫ ∞

−∞

∫ ∞

−∞
e−iyuK(y − x)γt (x) dx dy = K̃(u)γ̃t (u)

and, more generally, γ̃t (u) = (K̃(u))t γ̃0(u). Hence, we can replace multiple integra-
tion/summation with multiplication and then implement a one-dimensional inverse Fourier
transformation to recover γt (y). Explicit details under specific forms for K (and, in fact,
extended to Kt(y − x)) with γ0 are discussed in Section 5.2 below.

2.3. DENSITY DEPENDENT IPMS

Density dependence is introduced into an IPM to capture the effect of competition on
population growth and structure. At time t it revises K(y;x) to K(y;x, γt,.). In (2.2), we
expect survival probability and expected recruitment at time t to be affected by population
size at time t (perhaps f as well). Suppose qt (x) = q(γt,.) and �t(x) = �(γt,.). From
above, we have γt+1,. = (q(γt,.)+�(γt,.))γt,., revealing how, with suitable choices of q(·)
and �(·), expected population size at time t will affect expected population size at time
t + 1. If q(γt,.) + �(γt,.) > 1, we expect growth in population size from year t to year
t + 1, the opposite if < 1.

Current understanding of demographic rates, population growth, and density depen-
dence provides some guidance on functional forms. Both q(γ ) and �(γ ) should be
strictly decreasing (see Section 4). As γ → ∞ both should tend to 0. Potentially, as
γ → 0, q could tend to 1 and � to �0 > 0. For tree populations in the example below,
γt+1,.

γt,.
= q(γt.) + �(γt,.) ∈ [1 − ε,1 + ε] where ε might be 0.1. That is, barring catastro-

phes such as hurricanes or logging, a change in forest size of more than 10 % over a year
does not occur. Furthermore, survival probabilities are high and, hence � is small. This
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implies that, practically, we need not be concerned about behavior of our models for q(·)
and �(·) at extremes of the γ scale.

Two common forms for rates in the literature are 1/(1 + cγ ) (Beverton–Holt) and
e−cγ (Ricker) with c > 0 (see, e.g., Caswell 2001, Chapter 16), yielding, in the latter
case, q(γ ) = e−cqγ and �(γ ) = e−c�γ . We note that, in this context, Caswell (2001) has
suggested an overall scaling to the kernel which, in our notation, would take the form
γt+1(y) = ∫

K(y;x)b(x, γt,.)γt (x) dx, viewing b as a per-capita growth rate. A more gen-
eral Ricker growth rate specification is associated with the Ricker curve (1954). It takes
the form γ er(1− γ

k
) with r interpreted as the growth rate and k the carrying capacity.

Survival probability and recruitment in year t would be expected to depend on envi-
ronmental variables zt along with population size. Hence, we can extend q to q(γt , zt ),
similarly for �. For q , consider a logit, i.e.

q(γ, z) = exp(c0 + c1γ + βqz)
1 + exp(c0 + c1γ + βqz)

.

At β = 0 and c1 < 0, we have an alternative two parameter choice to the Ricker curve,
which also has the benefit of convenient regression modeling. Note that if β = 0, as γ → 0,
q does not approach 1, but can be arbitrarily close according to c0. But, again, within the
range of the γt,.’s in our data, this will not be a concern. So, below, we work with logit
forms and with C0 = exp(c0) and C1 = −c1. For �(γ, z), we can use the Ricker form
directly; on the log scale, we take log�(γ, z) = δ0 + δ1γ + β�z.

Lastly, we note that Ellner and Rees (2006) generalized the deterministic IPM by as-
suming a density dependent kernel K(y,x,Nt ) = P(y, x)+h(Nt )�(x)g(y) where Nt is a
weighted total population size given by Nt = ∫

x
W(x)n(x, t) dx for some weighting func-

tion W ≥ 0. Under this formulation of density dependence, they obtained the population
growth rate and net reproductive rate.

3. DATA TYPES AND THE DUKE FOREST DATA

As discussed in, e.g., Caswell (2001), with MPMs, demographic data are customarily
in one of two forms—most commonly at the individual level, i.e., individual level dynam-
ics over time, or, occasionally, in the form of a time series of population vectors. In the
first case, the individual level observations are used to fit parametric demographic models
for vital rates. Once the parameters are estimated, they can be inserted into the MPM in
(1.1) to project the population status over time. With data of the second type, we observe a
sequence of population vectors n(t1),n(t2), . . . over time without distinguishing the indi-
viduals. As in Section 2.1, model fitting in this setting is discussed by Dennis et al. (1995,
1997) who consider time as stage duration and introduce stochastic noise in the determin-
istic difference equations that describe the population dynamics. Then, they appeal to the
theory of non-linear multivariate time-series methodology to obtain the maximum likeli-
hood estimates of the model parameters. This likelihood-based methodology allows one to
statistically test the adequacy of the deterministically specified model for population evo-
lution, conditional on the available data. Also in this spirit, though in the context of PDEs,
is work of Banks et al. (1987, 1991).
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Like the MPM, fitting IPM’s is typically done with individual data. Data of the second
type would consist of a time series of point patterns for the trait distribution, e.g., size, asso-
ciated with a specified geographic region. So far as we are aware, only data of the first type
have been employed for fitting IPM’s. As mentioned in the introduction, here we propose
to work only with data of the second type.4 With individual level data, perhaps the most
direct modeling strategy would be through a dynamic model with individual level random
effects as in, e.g., Clark et al. (2010a). The state-space framework provides inference on
individual variation in terms of population parameters, while being anchored directly by
observations at the same scale. Afterward, desired population-level summaries can be cre-
ated. In this regard, the IPM, viewed as a mean field model, is not providing average or
expected transition behavior associated with a state space specification.

Hence, we see the role and advantage of IPM’s for large studies where tracking of
individuals is not feasible. For instance, we could not hope to track individual trees in
multiple forests on an annual basis over a span of many decades. Collecting marginal
point patterns at the scale of plots, without transition information on individuals, is more
realistic. Hence, we need to be able to fit IPMs with data of the second type. In particular, in
the application that follows we use diameter distributions of Liriodendron tulipifera (tulip
poplar) from the Duke Forest, North Carolina. Data collection is detailed in Clark et al.
(2010b). A sample of individual trees are marked and remeasured in this longitudinal study,
but, for the IPM we fit, we use the entire annual inventories, yielding annual (marginal)
observation of sizes. This form would arise from periodic surveys where individuals are
not marked.

4. MODEL DETAILS

Since the IPM models described in (2.2) approximate population demography, it is not
realistic to assume that they provide the true intensities that are driving the point patterns.
So, we introduce uncertainty, which can be accomplished in several ways. One might at-
tempt to do this within the kernel specification. However, even with the mechanistic forms
in (2.2), this will prove computationally infeasible. With regard to the intensities, we can-
not propose λt (x) = γt (x) + εt (x) with say, εt (x) a stationary mean 0 Gaussian process
over [L,U ] with covariance function σ 2

ε ρ(·, φ) because this could allow λt (x) < 0. So, as
is common with a stochastic process of positive random variables, we introduce the Gaus-
sian process on the log scale, i.e., λt (x) = γt (x)eεt (x), where εt is the mean 0 Gaussian
process above. An alternative specification would be a Gaussian process truncated at 0 but
this would be much more computationally demanding.

Furthermore, we do not apply the Kt(y, x) to λt (x). Rather, we allow the IPM to provide
dynamics in a deterministic fashion for the γt ’s and view the λt ’s as varying around their
respective γt ’s. A potential benefit is the possibility to take advantage of the recursive
relationship mentioned in Section 2, which may be available under the deterministic IPM.

4A simple statistical analogue would be paired vs. nonpaired comparisons in a two-sample problem.
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It is also facilitates a pseudo-IPM approximation, as discussed in Section 5. As a result,
the λt ’s are conditionally independent given {γt }. At the highest level, we assume the point
patterns, the xt ’s, are conditionally independent given {λt } and that each follows the usual
density for a nonhomogeneous Poisson process given its intensity. That is, the likelihood
associated with the time point t is given by

[xt |λt ] ∝
[

exp

(
−

∫ U

L

λt (x) dx

) nt∏
i=1

λt (xti)

]
. (4.1)

So, the observed sizes are conditionally independent given λt (x) but marginally depen-
dent due to the log Gaussian process model for λt (x). This convenience in specification
demonstrates the benefit of the multi-level modeling.

We initiate our model with γ0, a kernel intensity estimate (Diggle 2003). Hence, the full
posterior is proportional to

T∏
t=1

[
xt

∣∣λt (x), x ∈ [L,U ]]

×
T∏

t=2

[
λt (x), x ∈ [L,U ]∣∣γt (x), x ∈ [L,U ], σ 2, φ

]

× [{
γt (θ , γ0), t = 1, . . . , T

}][
σ 2][φ][θ ]. (4.2)

In (4.2), the bracketed term involving {γt } is a degenerate distribution. It is only employed
to denote the deterministic functional specification for the γt ’s given the IPM and θ . In
fitting the model, it is computationally efficient to marginalize over the λt ’s using Laplace
approximation, as described below. Typically, our interest will be in the process, i.e., in
Kt(y, x; θ), particularly its components and associated parameter estimates, as well as the
resultant γt (x)’s. Of course, we can always obtain the λt ’s after the fact by appropriate
composition sampling (Banerjee, Carlin, and Gelfand 2004).

In specifying the redistribution kernel K we confine ourselves to a parametric form.
Following Section 2, we assume K to be comprised of growth and recruitment and, with
density dependence, we write

Kt(y, x; zt , θ , γt,.) = Gt(y, x; zt , θ , γt,.) + Rt(y; zt , θ , γt,.), (4.3)

where the growth term Gt(.) is further decomposed as

Gt(y|x; zt , θ , γt,.) = q(x, γt,., zt )ft (y − x; zt , θ).

Again, returning to density elements, we interpret q(x, γt,., zt )ft (y − x; zt , θ) dx dy as the
expected number of individuals in size interval (y, y + dy) at time t + 1 from survivors in
size interval (x, x + dx) at time t . In particular, we assume ft to be Gaussian density with
mean and variances both depending on the covariates zt . Note that a “translation-invariant”
assumption for ft can be appropriate at the population level though it would almost never
be sensible at the individual level. We assume survival probability declines as function of



INFERENCE FOR SIZE DEMOGRAPHY FROM POINT PATTERN DATA 653

γt,. due to resource limitation. In its simplest form, following Section 2 and ignoring x

and zt , we would take q to be

q(γt,.) = Q0e
−Q1γt,.

1 + Q0e
−Q1γt,.

, (4.4)

where Q0 and Q1 (both > 0) are parameters that govern the rate of decay of the survival
probability.

The recruitment term takes a form similar to the growth term,

Rt(y; zt , θ , γt,.) = �(x,γt,., zt )gt (y; zt , θ).

With density elements, analogously, we interpret �(x,γt,., zt )gt (y; zt , θ) dx dy as the ex-
pected number of recruited individuals in size interval (y, y + dy) at time t + 1 from
individuals in size interval (x, x + dx) at time t . Customarily, the terms on the right side
reflect flowering and seed production (see, e.g., Rees and Ellner 2009). However, in our
examples, for the L we work with, seeds in year t will not produce trees of size greater
than L in year t + 1. Hence, the recruitment simply describes the size intensity for arrivals
in year t + 1. � is the expected influx in year t + 1 and gt is a density on ỹ = y − L,
which is assumed to be a translated exponential with mean depending on the covariates.
We assume influx declines with γt,. due to reduced availability of resources. So a simple
form for �, following Section 2.3, is

log�(γt,.) = δ0 − δ1γt,., (4.5)

with δ0 and δ1 both positive.
Under (4.4) and (4.5), we achieve a stable population if the expected number of indi-

viduals remains approximately the same over time implying q(γt,.) + �(γt,.) ≈ 1,∀t =
1,2, . . . . A population explosion is experienced when q(γt,.) + �(γt,.) � 1 and similarly
extinction can occur if q(γt,.) + �(γt,.) � 1. Of course, the case Q1 = δ1 = 0 is density
independence.

To handle asymmetric growth, one can specify an asymmetric kernel, such as a log-
Gaussian distribution for ft . In fact, one can also make the redistribution kernel richer
by specifying a semiparametric or nonparametric model for it but at the expense of more
difficult computation for model fitting.

Returning to (4.1), the stochastic integral cannot be evaluated in closed form, so we ap-
proximate it with a Riemann sum. We divide the interval [L,U ] into a fine grid consisting
of B cells of equal length with the centers given by x∗

j . We further assume that the inten-
sity is homogeneous within each cell and that the centers, x∗

j , remain fixed over the entire
time period under study. The length and cell level intensity for cell b are denoted by l and
λt (b); b = 1, . . . ,B , respectively. Then the operational likelihood in (4.2) becomes

T∏
t=1

[
exp

(
−

B∑
b=1

λt (b)l

)
B∏

b=1

[
λt (b)

]ntb

]
, (4.6)

where ntb is the number of points in cell b in year t . The choice of the quadrature does
not impact parameter estimates as long as the grid is fine enough to justify the assumption
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of homogeneous intensity on each grid cell. However, computational complexity increases
with increase in the number of cells. Thus, if the computation is rendered infeasible due
number of cells, one would coarsen the resolution and apply a more sophisticated quadra-
ture method to evaluate the integral (see, e.g., Davis and Rabinowitz 1984).

As noted above, we assume ft (y − x;μt, σ
2
t ) = φ(y − x;μt, σ

2
t ) and gt (y;ηt ) =

ηte
−ηt (y−L), y > L, with the parameters μt , σ

2
t , ηt incorporating the covariate information

(zt ). We assume μt ∼ N(ztβμ,σ 2
μ), log(σ 2

t ) ∼ N(ztβσ , σ 2
σ ), and log(ηt ) ∼ N(ztβη, σ

2
η ).

These specifications presume no intercept in zt and thus, can be interpreted as introducing
a time-varying intercept. We adopt independent vague N(0,102) prior for all β’s. Instead
of assigning priors for σ 2

μ,σ 2
σ , σ 2

η we fix them arbitrarily at 102 in the present study. Pre-
liminary investigation in fitting this multi-level hierarchical model suggests that posteriors
for these variance parameters have very large standard errors. The data carry little informa-
tion about them so we recommend fixing them at some large values. Under the assumption
of the exponential correlation structure, σ 2

ε and φ cannot be jointly consistently estimated
(Zhang 2004). Since we are more interested in learning about the uncertainty in how λ

varies around γ , we propose a weak prior for σ 2
ε and fix the decay parameter φ, setting

it to correspond to one-third of the range we adopt for the size distribution. We outline a
procedure to develop prior information about σ 2

ε in Section 6.1.1.
For the forms in (4.4) and (4.5), imposing priors on q(γt,.) and �(γt,.) requires specify-

ing priors on Q0,Q1, δ0 and δ1, respectively. We interpret Q0
1+Q0

as the survival probability

when the population size tends to 0 and δ0
1+δ0

as the replacement rate when the population
size tends to 0. By analogy with the Ricker curve (Section 2.3), we can roughly interpret
Q1 to be the global survival probability of the species and δ1 to be the average rate of influx
shown by that species. Q0,Q1, δ0, and δ1 are not well identified. In fact, intuitively, from
Section 2, the sum q(.) + �(.) is well identified but not its components. In Section 6.1.2
we discuss an estimation strategy to handle q and � using knowledge of the ecological
processes driving the survival and influx for the population.

5. MODEL FITTING AND INFERENCE

As we have noted, the model described in (4.2) is computationally demanding to fit. The
computational challenge arises because (2.3) does not have a closed form solution; we need
to resort to numerical integration to create the sequence of {γt (x)}. From Section 2, the
dimension of the numerical integrations increases as the number of time epochs increases
and consequently will result in an explosion of terms as we sum. An MCMC scheme
will be computationally prohibitive because we will have to perform these integrations
iteration by iteration. First, in Section 5.1, we consider a simpler form for K where we can
perform exact IPM updating. Then, in Section 5.2 we propose an approximate “pseudo”
IPM approach, using adjacent pairs of years, that allows us to handle more general K .

5.1. COMPUTATION FOR A DENSITY INDEPENDENT MODEL

Here, we consider the special case where, in K , the conditional density f , takes the
form f (y − x; zt , θ) and the qt and �t are time dependent, e.g., on zt but not size or
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density dependent.5 Then, the update can be written as

γt+1(y) =
∫

D

[
qtft (y − x; zt , θ) + �tgt (y; zt , θ)

]
γt (x) dx. (5.1)

We assume γ0(x) = γ̃0,.φ(x;μ∗, σ ∗2) where γ̃0,. is the initial population size and
φ(.;μ∗, σ ∗2) is the density function of a Normal distribution with mean μ∗ and vari-
ance σ ∗2. (Sensitivity to this initial intensity will, of course, disappear as t increases.)
We assume, as earlier, that ft (y − x; zt , θ) = φ(y − x;μt , σ

2
t ) and gt (y; zt , θ) =

ηte
−ηt (y−L), y > L. We further assume that μt , σ

2
t , ηt , qt = q(zt , θ),�t = �(zt , θ) are

all functions of the covariates and constant over x. Then, taking the Fourier transform of
γt+1(y) in (5.1) we arrive at the following result.

Result 1: Let g̃(u) = ∫ ∞
−∞ eiuxg(x) dx denote the Fourier transform of the function

g(x). Under the above assumptions we have

γ̃t (u) =
t−1∏
l=1

qle
iu(

∑t−1
l=1 μl+μ∗)− 1

2 u2(
∑t−1

l=1 σ 2
l +σ ∗2)

+
t−1∏
l=2

qle
iu(

∑t−1
l=2 μl+L)− 1

2 u2(
∑t−1

l=2 σ 2
l )γ1,.�1η1/(η1 − iu)

+
t−1∏
l=3

qle
iu(

∑t−1
l=3 μl+L)− 1

2 u2(
∑t−1

l=3 σ 2
l )γ2,.�2η2/(η2 − iu)

+ · · ·
+ qt−1e

iu(μt−1+L)− 1
2 u2σ 2

t−1γt−2,.�t−2ηt−2/(ηt−2 − iu)

+ γt−1,.�t−1e
iuLηt−1/(ηt−1 − iu), (5.2)

where γt,. =
∫ U

L
γt (x) dx. The proof follows by direct calculation.

Using this recursion relation in the spectral domain we can efficiently compute the
whole sequence of {γ̃t (u)}, alleviating the problem of explosion of integrals mentioned
above. We employ numerical integration to invert the Fourier transform and recover
{γt (x

∗)}’s, as described in the Appendix.

We assume the same priors for μt , σ
2
t , ηt , and the β’s as in Section 4. Also, we specify

priors on the survival probability, logit(qt ) ∼ N(ztβq, σ 2
q ), and expected influx logit(�t ) ∼

N(ztβ�,σ 2
�). Again, these priors can be interpreted as introducing time-dependent inter-

cepts for qt and �t . As before, we assume the parameters, [βμ,βσ ,βq,β�,βη], to be
mutually independent and impose a vague normal prior (mean 0, variance 100) on them;
We fix σ 2

μ,σ 2
σ , σ 2

q , σ 2
�,σ 2

η arbitrarily at 102. Since we have already gridded the interval
[L,U ], we can obtain a frequency distribution of the trait and can thereby evaluate the

5Here and below, we use θ to denote the collection of parameters in (4.2), acknowledging that a suitable subset
of them is associated with each of the components of K .
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modal value of that trait. In the present situation, we fix μ∗ = mode(x1). Since σ ∗2 con-
trols the spread of the intensity curve associated with the initial population vector, we set
it at var(x1).

A further simplification is obtained if we can integrate out λt from the joint posterior
arising from (4.2) using Laplace approximation. Then, we can draw θ from the resulting
approximate marginal posterior distribution. The following result helps us to obtain this
approximate distribution.

Result 2: Under discretization, we replace λt = {λt (x), x ∈ [L,U ]} with λt , a B × 1
vector, following (4.5), similarly with γ t . Then, at a particular time point t , an approxima-
tion for the conditional distribution of xt given θ , marginalized over λt is given by

[xt |θ ] ≈
[ |�∗

t |
|�|

] 1
2

exp

[
−1

2

(
(logγ t )

′�−1(logγ t ) − γ ∗
t
′
�−1γ ∗

t

)]

× exp

[
−1

2

(
η∗

t − γ ∗
t

)′
�∗−1

t

(
η∗

t − γ ∗
t

) −
b∑

i=1

eη∗
t i

]
, (5.3)

where γ ∗
t = logγ t + � × nt with nt = [nt1, . . . , ntB ]′. �∗−1

t = [�−1 + �2(γ
∗
t )] and η∗

t =
γ ∗

t − [�−1 + �2(γ
∗
t )]−1J2(γ

∗
t )

′. The expressions for �2(γ
∗
t ) and J2(γ

∗
t ) are given by

�2
(
γ ∗

t

) = l × diag
(
lelγ ∗

t1 , . . . , lelγ ∗
tB

)
,

J2
(
γ ∗

t

) = l × [
elγ ∗

t1 , . . . , elγ ∗
tB

]′
.

Proof: See the Appendix. �

Drawing θ from its marginal posterior increases the probability of acceptance substan-
tially. Simulation studies performed on a small set of time points are encouraging; the
parameter estimates obtained using these approximate marginal posteriors are not conse-
quentially different from the estimates obtained without marginalizing over λ.

5.2. PSEUDO-IPM UPDATING AND APPROXIMATE POSTERIOR INFERENCE

As in Section 4, we consider x∗
j to be the center of the grid cell j . Then the “pseudo”

IPM update is given by

γt+1
(
x∗
j

) =
∑

l

Kt

(
x∗
j |x∗

l ; zt , θ , γt,.

)
γ̂t

(
x∗
l

)
, (5.4)

where γ̂t (x) is an empirical estimate of the intensity corresponding to the point pattern
observed at time point t evaluated at the grid centers x∗

l . Note that, under this updat-
ing scheme, for each t , we replace the t dimensional integral required to get γt (x) in
the original IPM update (2.3) by a one dimensional integral. Looking at (4.2), the term
[{γt }; θ] implied computing the γt deterministically and sequentially for a given θ , i.e.,
�T

1 [γt |θ , γt−1]. Using (5.4), this now becomes �T
1 [γt |θ ,xt−1] where xt−1 yields γ̂t−1.

A graphical model may illuminate the difference. In Figure 1a, we show the graphical
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Figure 1a. Graphical model driving the updates in full IPM.

Figure 1b. Graphical model driving the updates in the “pseudo” IPM.

model associated with (4.2); in Figure 1b we show the revised graphical model using the
“pseudo” IPM.

Thus, given θ , we can generate the sequence of γt (x
∗
j )s with one-dimensional integra-

tions using the “pseudo” IPM update (5.4). Additionally, the approximation simplifies the
evaluation of the γt curves for any proposed value of θ in the MCMC scheme. In the fitting,
we gather the θ ’s from each pair xt−1,xt , acknowledging that these samples of θ do not
come from the exact posterior distribution.

To remedy this problem, we propose to treat θ as if they are time varying and
evaluate the time-specific likelihood to draw the posterior samples of θ for that time
point. Let θ t = {θ t1, . . . , θ tB} be the B samples of θ obtained for time point t from
the model [xt |λt ][λt |{γt (x|θ)}][θ ].6 Corresponding to each θ t , we have a sample of
B {γt (x|θ tb)}s. The posterior mean of γt (x|θ) is given by γ̂t (x) = 1

B

∑B
b=1 γt (x|θ tb). We

6Here, for convenience we have switched the notation from the degenerate distribution [γt ; θ] to a degenerate
distribution on the resulting function {γt (x|θ)}.
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plug γ̂t (x) into the IPM update (2.3) to get γt+1(.) and then proceed similarly to obtain
the posterior samples, θ t+1,b at time t + 1. Under the approximate marginalization de-
scribed above, we essentially have samples from the following sequence of posteriors:
[θ |x1], [θ |x2, γ̂1(x1)], . . . , [θ |xT , γ̂T −1(xT −1)], where γ̂t (x) is the posterior mean of γt (x)

obtained at time point t . But note that γ̂T −1(xT −1) is an implicit function of the entire
sequence of the point pattern up to time T − 2. So, at the last time point, the samples of θ

come from [θ |xT , g(xT −1,xT −2, . . . ,x1)].
We seek samples of θ from [θ |xT , . . . ,x1]. With samples of θ for each time point, we

can perform an importance sampling step to adjust for the approximate Laplace marginal-
ization. Let θ11, . . . , θ1B, θ21, . . . , θ2B, . . . , θT 1, . . . , θT B be the samples of θ obtained
from the sequence of posteriors [θ |x1], [θ |x2, γ̂1(x1)], . . . , [θ |XT , g(xT −1, . . . ,x1)], re-
spectively. Then, each θ tb, t = 1, . . . , T , b = 1, . . . ,B is accepted with probability

wtb = [θ tb|xT , . . . ,x1]
[θ tb|xt ] ,

where [θ tb |xT , . . . ,x1] = ∫
λT ,...,λ1

∏T
t=1[xt |λt ][λt |{γt (x|θ tb)}][θ tb]dλ1 . . . dλT and [θ tb|

xt ] = ∫
λt

[xt |λt ][λt |{γt (x|θ tb)}][θ tb]dλt . Since both the marginalizations are done using
Laplace approximation, the resulting ratio improves the order of the error (Tierney et al.
1989a, 1989b). Once we have the set {θ tb,wtb}, we can obtain the empirical distribution
function, F̂t (θ), of θ for every time point. These functions are then combined to give an
estimate of the posterior distribution function of θ as 1

T

∑T
t=1 F̂t (θ).

5.3. PUTTING THE PIECES TOGETHER; POSTERIOR SUMMARIES

In order to assemble the ideas in the previous subsections into an overall model fitting
procedure, we offer the following summary. Suppose a general version of K as in (4.3).
That is, we have a model with q and � dependent upon size or with density dependence or
both. Then, we confine ourselves to Figure 1b. In particular, we employ only the “pseudo”
IPM, we revise the IPM component of the overall model as in Section 5.2, we use numerical
integration as in (4.6), with a common θ for all t, t + 1 pairs.

With density independence, we have two paths. We can do exactly as with the den-
sity dependence case above. Alternatively, we can follow Figure 1a. That is, following
Section 5.1, we use Fourier transformation with one dimensional inversion, followed by
Laplace approximation to marginalize over λt . Under the marginalization, we introduce
θ tb as in Section 5.2 and do the resampling and empirical distribution function computa-
tion as described there. Evidently, the posterior samples of θ will be different according
to the model we use. Assuming [θ |xT , . . . ,x1] ≈ [θ |xT , g(xT −1,xT −2, . . . ,x1)], we might
choose to use the posterior samples of θ obtained from the last time point to draw infer-
ence. If we want to use all the samples of θ collected over all the time points, we resample
them using wtb as the weights and use the resampled θs to draw inference. If we imple-
ment the “pseudo” IPM update, the posterior samples of θ are obtained in a straightforward
manner. Simulations in Section 6 under a known IPM suggest that the posterior inference
for θ obtained from these three strategies is very similar.
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We also seek to draw inference on the intensity curves, in particular the γt s. To this end
we proceed in the following manner. Let {θ1, . . . , θB} denote the posterior samples of θ .
Then, for each θb, b = 1,2, . . . ,B we generate a sequence of γ̃t (x|θb), t = 1,2, . . . , T

using the recursion relation (5.2). Thus, the posterior mean of the curve γt is given by
E(γt (x)|{xt , t = 1,2, . . . , T }) ≈ 1

B

∑B
b=1 γ̃t (x|θb). The upper and lower curves are ob-

tained from the point-wise interval estimates. Estimates of the λt ’s may be of interest, in
order to compare with the observed xt ’s. These can be generated for each of the posterior
samples of the θ ’s and the γ t ’s using the full conditional distribution which is proportional
to the multivariate log-normal conditional distribution for λt |γ t times the contribution in
the likelihood (using (4.6)) from xt |λt .

6. EXAMPLES

6.1. SIMULATION STUDIES

In Section 6.1 we present two simulation examples to serve as a proof of concept. In
Section 6.2 we consider the Duke Forest data.

6.1.1. A Density Independent IPM

Here, we simulate size distributions over time using a density independent IPM model.
For convenience, we do not introduce covariates.

1. Set L = 0.15 and U = 10 and divide the interval into 100 grid cells of equal length.
Let x∗

j denote the centers of the j th grid cell, j = 1, . . . ,100.

2. Set C∗
1 = 50, μ∗ = 3, σ ∗2 = 1 and obtain γ1(x

∗
j ) using the parametric form de-

scribed below the expression in (5.1).

3. Obtain λ1 using the measurement error model λ1(x
∗
j ) = γ1(x

∗
j ) × ε(x∗

j ), where
(ε(x∗

1 ), . . . , ε(x∗
100)) ∼ Lognormal(0,�). As described above, � has the exponen-

tial covariance structure with σ 2
ε = 0.01 and φ = 0.9.

4. Define λ̃1 = max{λ1(x∗
1), . . . , λ1(x∗

100)} + 1 and generate a point pattern from a ho-
mogeneous Poisson process with intensity λ̃1.

5. Using the ratio λ1(x
∗)

λ̃1
, we thin the above point pattern to arrive at our realized point

pattern for time point 1.

6. Fix μt = 1, σ 2
t = 0.8, qt = 0.9, ηt = 1,�t = 0.1,∀t . Plug in these parameters in the

IPM update (2.3) to get γ2(x
∗
j ) and repeat Steps 3, 4 and 5 to obtain a point pattern

realization corresponding to time point 2.

7. Using this scheme, we generate marginal point patterns for five consecutive years.

In fitting the IPM, we assume all the parameters in K(.) are global and remove the hi-
erarchical level that relates the parameters of K(.) to the covariates using the regres-
sion hyper-parameters. As described earlier, we set μ∗ and σ ∗2 to be the mode(x1)
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Table 1. Comparing the estimates of the global parameters obtained using two computational strategies (see
Section 6.1.1).

Posterior summary of

Parameters True value θT θI θP

q 0.9 0.83 (0.76, 0.95) 0.83 (0.76, 0.92) 0.78 (0.69,0.94)
μ 1 1.03 (0.73, 1.44) 1.05 (0.74, 1.41) 0.89 (0.73, 1.56)
σ 2 0.8 0.72 (0.61, 1.01) 0.66 (0.47, 0.95) 0.71 (0.53, 1.21)
η 1 0.93 (0.75, 1.22) 0.94 (0.78, 1.23) 0.87 (0.68, 1.29)
� 0.1 0.08 (0.005, 0.22) 0.08 (0.003,0.17) 0.09 (0.005,0.27)
σ 2
ε 0.01 0.017 (0.005, 0.028) 0.005 (0.001, 0.026) 0.016 (0.001, 0.034)

Computation – 3 hrs 3 hrs 1 hr
times 12 mins 25 mins 05 mins

Table 2. Comparing the MSEs obtained using two computation strategies (see Section 6.1.1).

Time MSE using θI MSE using θP

2 1.83 2.74
3 1.81 2.94
4 1.04 2.44
5 1.23 2.04

and var(x1), respectively. The priors on the parameters of the redistribution kernel are
as follows: μt = μ ∼ Normal(0,102), σ 2

t = σ 2 ∼ IG(10,2), qt = q ∼ Uniform(0,1),
�t = � ∼ Uniform(0,1), ηt = η ∼ lognormal(0,102). The prior for σ 2

ε is developed in
the following way: For each year we estimate the empirical intensity, λ̃t . An initial esti-
mate of θ is obtain by setting θ̃ = argminθ

∑
t (λ̃t − γ t (x|θ))2. Using θ̃ , we generate the

whole sequence of {γ t (x|θ̃)}. Then, define Ṽt = var(log(λ̃t ) − log(γ t (x|θ̃))). The prior of
σ 2

ε is taken to be inverse gamma with mean
∑

t Ṽt /t and variance var(Ṽ1, . . . , Ṽt ).
Posterior inference is drawn using (i) only the samples generated at the last time point,

labeled θT , (ii) using the importance sampling scheme in Section 5.2 to retain samples
for each of the t’s, labeled θ I and (iii) the samples generated using the “pseudo” IPM
scheme with density dependence, labeled θP . Table 1 shows the comparison of estimates
of θ obtained from these three different schemes and also compares the computation time
required for each scheme to generate 50,000 samples under MCMC, with the first 10,000
discarded as burn-in. The resampled θs yield almost identical results to those obtained by
using the samples of θT . Moreover, the density-dependent IPM gives reasonable estimates
compared to those obtained from the other two schemes even though this is done under
misspecification. In Figure 2, we plot the posterior mean curve of γt obtained from the
posterior samples θ I and θP against the true γ s used to simulate the data for three of the
five time points. The solid line shows the true simulated γt , the dotted line shows the γt s
estimated using θ I s and the dashed line shows the γt obtained using θP . Since we know
the true intensity, we can quantify how the estimated intensities differ from the true one by
using the Mean Integrated Square Error criterion (discretized using the 100 x∗

j ’s). Table 2
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Figure 2. Comparing the estimated γt s using the importance sampling scheme and “pseudo” IPM scheme (Sec-
tion 6.1.1). The true simulated γt s are shown with solid line. The γt s estimated using importance sampling
scheme are shown with dotted line, the dashed line shows γt s obtained using the “pseudo” IPM scheme. The rug
stars (*) show the simulated data points.

shows the MISE’s obtained using θ I and θP , starting from the second time point. We see
that, not surprisingly, the θ I do better since the true model is not density dependent.

6.1.2. An IPM with Size Dependence

Here, we make the redistribution kernel, K , more flexible by including size information
in the survival probabilities qt (x) and making the growth density asymmetric. We describe
the simulation procedure below:

Once again we assume the lower bound (L) to be 0.15 and the upper bound (U ) to be 10.
The model for survival probability is given by

q(x;βq) = exp(β0q + β1qx)

1 + exp(β0q + β1qx)
.
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We specify β0q = 2.26 and β1q = 0.23. These values of β0q and β1q correspond to a mini-
mum survival probability of 0.91 corresponding to the smallest size class and a maximum
survival probability of 0.99 corresponding to the largest size class. The growth kernel,

f (y|x) is given by 1
yσf

√
2π

exp(− (log(y)−log(x))2

2σ 2
f

) so the expected value of y|x is given by

x exp(σ 2
f /2). In order to distribute new y’s roughly around a current x, we assume a small

value for σ 2
f = 0.5. We do not assume any size dependence in the fecundity part. For sim-

plicity, we keep the expected recruitment per individual (�) constant at 0.15. The η in the
recruitment size density (η exp(−η(y − L))) is kept fixed at 1.5.

We assume Uniform priors on β0q and β1q with informative support. The lower and
upper bounds for the priors of these two parameters are fixed such that the lowest survival
probability corresponding to the lowest size class does not go below 0.80 and the high-
est survival probability corresponding to the highest size class does not exceed 0.9999.
Satisfying these conditions, we assume a Uniform(1.38, 2.5) prior on the former and a
Uniform(0.05,0.5) prior on the latter. For σ 2

f , we assume a Gamma prior with mean 1 and
variance 2. As discussed in Section 2.3, we anticipate q(x)+� ∈ (0.9,1.1), so we assume
a Uniform(0.1, 0.3) prior on �. For η, we expect that the new recruits will occupy the first
few size classes and hence specify a Uniform(0.5,5) prior on it. Table 3 shows the poste-
rior mean and 95 % CI (in parentheses) of the parameters obtained from fitting the pseudo
IPM. Figure 3 shows the true simulated γt (x) and the estimated mean log intensity along
with the simulated point pattern for three different time points.

6.1.3. A Density Dependent IPM

Next, we turn to a density dependent example using (4.4) and (4.5). To attain stability
of the population sizes in the density dependent IPM, we assume that we have an upper
bound for the survival function q(.) and the recruitment function �(.) denoted by qu and
�u, respectively. These are achieved when γt,. is 0 and yield the values of Q0 and δ0 using
the equations:

Q0

1 + Q0
= qu, (6.1)

and

δ0

1 + δ0
= �u. (6.2)

In Figure 4 we show the behavior of population sizes for different values of qu,�u,Q1

and δ1. The top panel shows a scenario where population increases over time until it reaches
a stable limit. Such a situation could be arrived at by fixing qu = 0.97,�u = 0.2,Q1 =
δ1 = 0.009. A population extinction scenario (middle panel) can be obtained when we fix
qu = 0.96,�u = 0.02,Q1 = 0.009 and δ1 = 0.91. The bottom panel shows an oscillating
population size which eventually reaches a stable limit. Such an oscillating scenario can
be obtained when qu = �u = 0.97,Q1 = 0.1 and δ1 = 0.15. Because q(.) and �(.) are
strictly decreasing, we can never have explosive population size.
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Figure 3. Plot of true γt s (dotted line) and estimated γt s (solid line) using the size-dependent IPM (Sec-
tion 6.1.2), along with the pointwise 95 % CI (dashed line) estimates for three time points. The rug stars (*)
show the simulated point pattern of sizes obtained at the corresponding time points.

Table 3. Model retrieval under size dependent IPM (see Section 6.1.2).

Parameters True value Posterior summary under
stable population

β0q 2.26 2.12 (1.76, 2.39)
β1q 0.23 0.35 (0.08, 0.42)
σ 2
f

0.50 0.70 (0.23, 1.85)

η 1.50 1.94 (1.004, 2.23)
� 0.15 0.12 (0.03,0.24)
σ 2
ε 0.01 0.004 (0.0001, 0.035)

To illustrate the performance of the density dependent IPM, we use the population
scenario described in the top panel of Figure 4. We randomly generate an initial pop-
ulation of size 10 in the interval [0.15, 3]. We set Q0 = 31.69, Q1 = 0.009 and δ0 =
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Figure 4. Three population size scenarios using density dependent IPM: population size increasing monotoni-
cally over time until it reaches a stable size (top panel); a population extinction scenario (middle panel); popula-
tion size oscillating over time until it reaches a stable size (bottom panel).

0.25, δ1 = 0.009. Then q(γt,.) and �(γt,.) are given by Equations (4.4) and (4.5). We
fix μt = μ = 0.1, σ 2

t = σ 2 = 0.2, ηt = η = 1 and, using the density dependent survival
probability and expected influx, we generate γt+1 from (2.3). Then, taking σ 2

ε = 0.01, we
simulate the point pattern of sizes using the procedure described above. Figure 5 shows the
simulated γt,. and λt,. =

∫ U

L
λt (x) dx over time. We see that the population grows initially

and then stabilizes starting roughly at t = 40.
Although we have simulated marginal point patterns for 100 time points, such rich

data may not be available in practice. So we train the density-dependent IPM on an ini-
tial portion of this simulated data and forecast γt (x) for the rest of the time points. We then
compare the predicted intensity with the true one to assess the adequacy of such forecasts.
While fitting the model, we use the “pseudo” IPM procedure described in (5.4). We assume
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Figure 5. The simulated γt,. (solid line) and λt,. (dashed line) for 100 time points (Section 6.1.3).

that qu and �u are known and then solve (6.1) and (6.2) to get Q0 and δ0, respectively.

Since we have no additional information regarding the values of Q1 and δ1, we estimate

them as part of the model fitting. However, given the form of q(γt,.) and �γt ,. and that they

enter additively in
∫

K(y;x)dy, Q1 and δ1 are not identifiable unless we have strong prior

information. However, the sum is. The prior choices are same as described in the previous

section and we employ a Uniform(0, 0.2) prior on Q1 and δ1.

As the first exercise, we train the model on the first 20 time points and forecast γt (x) on

the remaining 80 time points. Figure 6a shows the plot of the true simulated γ versus the

estimated one along with the lower and upper curves, obtained from the pointwise 95 %

interval estimates for time points 1, 20, 35, 100. Clearly, the uncertainty increases as the

forecast horizon increases. Next, we train the model on the first 30 time-points and forecast

γt (x) on the remaining time-points. Figure 6b shows the plot of the true simulated γ versus

the estimated one along with the lower and upper curves, obtained from the pointwise

95 % interval estimates, again for time points 1, 20, 35, 100. Once again, the uncertainty

increases as the forecast horizon increases, but with the additional data, the estimated γt (x)

are closer to the true values and the uncertainty bands are tighter than what we observe in

Figure 6a. Figure 7a shows the plot of γt,. estimated using the first 20 time points versus

the true γt,.. In Figure 7b, we plot γt,. estimated using the first 30 time points against the

true γt,.. In both figures we show the 45◦ line (in solid) to visually ascertain how well each

model can capture the dynamics of the population size. Since γt,. increases monotonically

in this simulation, one can infer that the forecasts worsen for both models as we predict

deeper into future. However, one can also see that γt,. estimates obtained using 30 time
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Figure 6a. Plot of true simulated γt s (dotted line) and estimated γt s (solid line), for the density-dependent IPM,
along with the pointwise 95 % CI (dashed line) estimates using data from the first 20 time-points.

points show considerable improvement as compared to the estimates obtained when we
use only 20 time points. Table 4 shows the posterior summary of the parameters estimated
using the simulated data for 30 time points.

6.2. TWO ANALYSES OF DUKE FOREST DATA

Here, we consider two analyses using Duke Forest data. In Section 6.2.1, we implement
a full IPM fitting using our modeling approach. In Section 6.2.2 we look at a comparison
between projections using our approach and those from fitting with individual-level data.

6.2.1. Our Modeling Approach Applied to Duke Forest Data

Measurements of stem diameter of the tree species Liriodendron tulipifera (Litu), ob-
served in the Blackwood site of the Duke Forest, were obtained from 2000 to 2010. The
number of trees varied from 305 in 2004 to 340 in 2010. The initial population size in
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Figure 6b. Plot of true simulated γt s (dotted line) and estimated γt s (solid line), for the density-dependent IPM,
along with the pointwise 95 % CI (dashed line) estimates using data from the first 30 time-points.

Table 4. Model retrieval under density dependent IPM (see Section 6.1.3).

Parameters True value Posterior summary under
stable population

μ 0.1 0.16 (0.06, 0.23)
σ 2 0.2 0.15 (0.09, 0.35)
η 1 1.16 (0.71, 1.28)
Q1 0.009 0.007 (0.0005, 0.017)
δ1 0.009 0.012 (0.007,0.028)
σ 2
ε 0.01 0.008 (0.005, 0.026)

year 2000 was 317. Over the course of the data collection, diameters ranged from 0.153
to 82.375 cm. As covariates, we used winter temperature (degrees centigrade) and sum-
mer drought, as captured through the Palmer Drought Severity Index (PDSI), centered
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Figure 7. (a) Plot of true simulated γt,. and estimated γt,. (dashed line), for the density-dependent IPM, using
data from the first 20 time-points along with 45◦ line (solid) and (b) plot of true simulated γt,. and estimated γt,.

(dashed line), using the density-dependent IPM, using data from first 30 time-points along with 45◦ line (solid).

Figure 8. (a) Plot of the PDSI versus year and (b) plot of the winter temperature versus year.

and scaled about their sample mean and sample standard deviation, respectively (Clark
et al. 2011a, 2011b). In Figures 8a and 8b, respectively, we plot the raw PDSI and win-
ter temperature observed during the study period, revealing considerable annual varia-
tion.

Because large changes in population size are not expected over a single decade (not
revealed by the data), we fitted the density-independent IPM using Fourier transforma-
tion with one dimensional inversion, followed by Laplace approximation to marginalize
over λt . We use the regression models for the vital rates in K described above, including
a logistic regression for q and � with no population size (γt,.) term. The final estimates
are obtained using the resampled θ∗

tj following the procedure outlined in Section 5.2. We
use the priors specified in Section 5.1 and set the lower limit L and upper limit U at 0.10
and 100 cm, respectively. We hold out the data from year 2010 and train the model on the
earlier time points. Then, we use the covariates for the validation year and predict γt (x)
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Figure 9a. Plot of γt (x) (solid line) along with the pointwise 95 % CI (dashed line). The rug stars (*) show the
observed size patterns.

for that year. Table 5 provides a posterior inference summary for the model parameters.

Figure 9a shows the posterior mean curve of γt along with the 95 % pointwise interval

estimates for the data in the training sample for even years beginning in 2002. Figure 9b

shows the predicted γt (x) for 2010 along with the uncertainty associated with it.

Figure 10a shows the posterior summary of the survival probability, q , and Figure 10b

shows the expected influx, �, for each year. Finally, Figure 11a shows the posterior

mean survival probability surface ( 1
B

∑B
l=1

exp(zβ∗
q,l )

1+exp(zβ∗
q,l )

, where β∗
q,l are the posterior sam-

ples of βq ) over z. Figure 11b shows the posterior mean influx per individual surface

( 1
B

∑B
i=l

exp(zβ∗
�,l )

1+exp(zβ∗
�,l )

, where β∗
�,l are the posterior samples of β�) over z. To demonstrate

the short-term predictive performance of our IPM model, we consider year-to-year changes

in population sizes, plotting the observed and expected (under our IPM) population sizes

in Figure 12. The curves are in close agreement.
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Figure 9b. Plot of the predicted γt (x) (solid line) along with the pointwise 95 % CI for year 2010 (dashed line).
The rug stars (*) show the observed size pattern. The empirical intensity corresponding the observed point pattern
is shown with (-.).

Table 5. Posterior summary of the regression parameters governing the size distribution of Litu using density-
independent IPM (see Section 6.2.1).

Parameters Posterior summary

βq Intercept 2.24 (1.05, 2.48)
βq PDSI −0.15 (−0.45, 0.17)
βq Wtemp 0.14 (−0.30, 0.37)
βμ Intercept −2.43 (−3.15, −1.84)
βμ PDSI 0.17 (−0.31, 0.96)
βμ Wtemp 0.19 (−0.43, 0.63)
β
σ2 Intercept 2.06 (1.36, 2.72)

β
σ2 PDSI −0.15 (−1.19, 0.56)

β
σ2 Wtemp −0.23 (−0.86 1.04)

β� Intercept −3.00 (−4.01, −2.46)
β� PDSI −0.44 (−1.41, −0.01)
β� Wtemp −0.68 (−1.91, −0.19)
βη Intercept −2.56 (−3.01, −2.98)
βη PDSI 0.78 (0.51, 1.00)
βη Wtemp 0.79 (0.42, 0.96)
σ 2
ε 0.04 (0.002, 0.1)

6.2.2. Comparing Projections

Comparing projections under an IPM fitted with individual data vs. one fitted using our
approach is difficult. If we only have point patterns over time, we cannot fit the individual
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Figure 10. (a) Posterior mean of the survival probability, qt (solid line) along with the pointwise 95 % CI
(dashed line) and (b) posterior mean of the influx per individual, �t (solid line) along with the pointwise 95 %
CI (dashed line)

Figure 11. (a) Posterior mean survival probability surface over the covariate space and (b) posterior mean influx
per individual surface over the covariate space.

level model; with individual level data, it is unclear what sort of dynamic point patterns
will arise and whether our intensity-based modeling assumptions apply. Nonetheless, we
supply an example which reveals the advantage for short term prediction when fitting K

using our modeling approach compared with fitting using individual level data and then
projecting. We use the foregoing Duke Forest data to make this comparison. However,
we remove the time dependence in K by removing both density dependence and climate
dependence, using only size dependence. Moreover, we only compare observed annual
population size with the population size estimated under the two models.

From Rees and Ellner (2009), the long term growth rate is given by E(log(N(t +
1)/N(t))) (assuming this expectation exists). Under appropriate assumptions, we can in-
voke the law of large numbers and the long term growth rate can be written as

lim
t→∞

1

t

t−1∑
j=0

log

(
N(j + 1)

N(j)

)
= lim

t→∞
1

t
log

(
N(t)

N(0)

)
. (6.3)
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Figure 12. Plot of observed population sizes (solid line) and the expected population sizes (dash-dotted line)
obtained under our IPM from year 2001 through 2009.

Figure 13. Plot of log(
N(t)
N(0)

) with respect to time (solid line). Overlaid are the plots of E(log(
γt,.
γ0,.

)|Data)

(dash-dotted line) and the projected population estimate obtained from individual based IPM (dashed line). Both
the IPMs use stationary, size-dependent redistribution kernel.

The empirical estimate of (6.3) is 1
T

log(
N(T )
N(0)

), where T is the last time point.7 For the
Litu data, this value is 0.0016. For our IPM model, we can compare this with the posterior

7As T grows large, the effect of normalizing by N(0) diminishes so, often the growth rate is written without
normalizing by N(0) as in Ellner and Rees (2007).
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mean of 1
T

log(
γT,.

γ0,.
), which is 0.009 (again γ0,. is an empirical intensity). The 95 % credible

interval for this quantity is (−0.015,0.021) which contains the empirical estimate. In fact,
Figure 13 plots the empirical estimates log(

N(t)
N(0)

) along with our corresponding posterior
mean for t = 1,2, . . . ,9. Given the foregoing simplified model assumptions, the curves are
in reasonable agreement.

For the individual data based IPM, working with trees, often only some of the vital
rates can be estimated, in which case ad hoc assumptions are used to fill out the kernel.
We applied an approach similar to Zuidema et al. (2010) for tree population dynamics,
where, as in our situation, they could not actually observe fecundity and thus used aggre-
gate values for transitions from trees to seedlings. We constructed transition kernels for
growth of seedlings and trees using similar assumptions, i.e., fitted GLMs for adults and
aggregate transitions for recruitment. We evaluated eigenvalues from discretized kernels as
is standard practice with IPMs. Because we do not have initial distributions for all seedling
classes we projected the population forward from the initial tree size distribution (individ-
uals larger than 2 meters tall). Without input of new individuals across the L boundary,
densities rapidly decay. We used the same assumptions about aggregate behavior in model
fitting to evaluate flux across the L boundary, based on growth rates of seedlings. Then
n(t + 1) = An(t)+ v, where v is a vector of zeros except for the first class, which contains
the input from seedling growth into the first diameter size class. The resulting numbers
enable estimates relative to the observed N(0) to compare with the empirical growth rates.
They are overlaid in Figures 13. The estimated growth rate obtained from this individual
level model is 0.044. With regard to short term prediction, we see substantial discrepancy
between the inference from the individual level model and our model as well as the empir-
ical estimates. Unfortunately, when fitting the individual level IPM, there is no uncertainty
that we can attach to the dashed line arising from that model so we cannot make formal
inferential comparison with the empirical plot.

7. SUMMARY AND FUTURE WORK

We have presented a new view for specifying, fitting, and analyzing population dy-
namics using IPM models. We can accommodate both density independent and dependent
cases and incorporate size dependence. We work within a three-stage Bayesian hierarchical
modeling framework, resulting in very demanding model fitting. We have offered several
approximate fitting strategies which, based upon simulation study, seem to perform well.
We also presented the results of fitting an IPM for size distribution of a tree species using
data from Duke Forest.

Future work will see us investigating additional species to compare IPM’s. We will also
explore the possibility of building a joint IPM specification to allow for dependence be-
tween species. Such dependence could obviously affect both population size and size dis-
tribution. We will also turn to the U.S. Forest Service’s Forest Inventory Analysis dataset.
This dataset spans more than 42,000 plot measurements over the eastern U.S. but samples
only 20 % each year. Two major related questions emerge: how can we fit an IPM when
we never observe consecutive years of data for any plot and how can we scale an IPM to
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accommodate such a large region? We will offer approaches to address these questions in
future work.

[Published Online December 2012.]

APPENDIX

Approximate Inverse Fourier Transform The inverse Fourier transform (IFT) is a one-
dimensional integral given by

γt (x) = 1

π

∫ ∞

−∞
e−iux γ̃t (u) du. (A.1)

We approximate this IFT as follows:

1. At the outset we assume that γt (x) is effectively 0 outside the interval [0,A] (where
[L,U ] ⊂ [0,A]).

2. Let {uk}, k = 0, . . . ,N − 1 be the N frequency sampling points with sample spacing
�u. Then uk = k�u.

3. Let x∗
j be the return grid (the grid centers in our case) on which we want to obtain

the values of γt (x).

4. Now approximate the integral in (A.1) using the trapezoid rule, i.e.

γt (x) ≈ 1

π

N−1∑
k=0

δke
−iukx γ̃t (u)�u, (A.2)

where δk = 1
2 when k = 0 and 1 otherwise.

5. Then plugging the values of x∗
j into (A.2) we get

γt

(
x∗
j

) ≈ 1

π

N−1∑
k=0

δke
−iukx

∗
j γ̃t (uk)�u. (A.3)

Proof of Result 2: Under discretization, we replace λt = {λt (x), x ∈ [L,U ]} with λt ,
a B × 1 vector, following (4.5), similarly with γ t . Under the Gaussian process assumption
for ε(x), we want to marginalize over λ when logλ ∼ GP(logγ ,�). That is, we want to
evaluate the following expression:

[x|θ ] =
∫ ∞

0

[
exp

(
−

B∑
i=1

λ(b)l

)
B∏

i=1

[
λ(b)

]nb

]

× 1

(2π)B/2|�| 1
2
∏B

i=1 λ(b)
exp

(
−1

2
(logλ − logγ )′�−1(logλ − logγ )

)
dλ

= exp

[
−1

2

(
(logγ )′�−1(logγ ) − γ ∗′

�−1γ ∗)]

×
∫ ∞

0
exp

(
−

B∑
b=1

elηi

)
exp

(
−1

2

(
η − γ ∗)′

�−1(η − γ ∗))dη, (A.4)
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where η = logλ, γ ∗ = logγ + � × n, n = [n1, . . . , nB ]′ and l is the length of the grid
cell. Then note that the integral in (A.4) is actually Eη(e

−∑B
i=1 leηi

), where η ∼ N(γ ∗,�).
Then, following Harding and Hausman (2007), we write

Eη

(
e−∑B

i=1 leηi
) = (2π)−B/2|�|− 1

2

∫
exp

(−g(η)
)
dη,

where

g(η) = 1

2

(
η − γ ∗)′

�−1(η − γ ∗) +
B∑

i=1

leηi

= g1(η) + g2(η). (A.5)

Now expanding g(η) about a point η∗ using Taylor series we get

g(η) ≈ g
(
η∗) + (

η − η∗) δ

δη
g(η)

∣∣∣
η=η∗ + (

η − η∗)′ δ2

δηδη′ g(η)

∣∣∣
η=η∗

(
η − η∗), (A.6)

where η∗ is the solution of the equation δ
δηg(η) = 0, i.e.

(
η∗ − γ ∗)′

�−1 + [
elη∗

1 , . . . , elη∗
B
] = 0. (A.7)

Equation (A.7) is a system of B non-linear equations in η and is difficult to solve simul-
taneously when B (number of grid cells) increases. So we expand g2(η) about γ ∗ using
Taylor series. Then

g2(η) ≈ g2
(
γ ∗) + (

η − γ ∗)′ δ

δη
g2(η)

∣∣∣
η=γ ∗ + (

η − γ ∗)′ δ2

δηδη′ g2(η)

∣∣∣
η=γ ∗

(
η − γ ∗). (A.8)

Now

J2
(
γ ∗) = δ

δη
g2(η)

∣∣∣
η=γ ∗ = l × [

elγ ∗
1 , . . . , elγ ∗

B
]′
, (A.9)

and

�2
(
γ ∗) = δ2

δηδη′ g2(η)

∣∣∣
η=γ ∗ = l × diag

(
lelγ ∗

1 , . . . , lelγ ∗
B
)
. (A.10)

Using (A.8), (A.9) and (A.10) in (A.5) we get

g(η) ≈ 1

2

(
η−γ ∗)′

�−1(η−γ ∗)+g2
(
γ ∗)+ (

η−γ ∗)′
J2

(
γ ∗)+ (

η−γ ∗)′
�2

(
γ ∗)(η−γ ∗).

(A.11)
Further expanding g(η) is (A.11) about η∗ using Taylor series we get

g(η) ≈ g
(
η∗) + (

η − η∗)′ δ

δη
g(η)

∣∣∣
η=η∗ + (

η − η∗)′ δ2

δηδη′ g(η)

∣∣∣
η=η∗

(
η − η∗), (A.12)

where η∗ is the solution of the equation δ
δηg(η) = 0. Then differentiating g(η) as obtained

in (A.11) w.r.t. η we get
(
η − γ ∗)′[

�−1 + �2
(
γ ∗)] + J2

(
γ ∗) = 0

⇒ η∗ = γ ∗ − [
�−1 + �2

(
γ ∗)]−1

J2
(
γ ∗)′

. (A.13)
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Further differentiating w.r.t. η′ we get

�∗−1 = δ2

δηδη′ g(η)

∣∣∣
η=η∗ = [

�−1 + �2
(
γ ∗)].

Then substituting �∗−1 in (A.12) and completing the Gaussian integral we get

Eη

(
e−∑B

i=1 leηi
) ≈

[ |�∗|
|�|

] 1
2

exp
(−g

(
η∗))

=
[ |�∗|

|�|
] 1

2

exp

[
−1

2

(
η∗ − γ ∗)′

�∗−1(η∗ − γ ∗) −
b∑

i=1

eη∗
i

] (
using (A.5)

)
,

where η∗ are obtained in closed form in (A.13). �
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