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Stochastic Modeling for Velocity of Climate
Change

Erin M. Schliep, Alan E. Gelfand, and James S. Clark

The velocity of climate change is defined as an instantaneous rate of change needed to
maintain a constant climate. It is developed as the ratio of the temporal gradient of climate
change over the spatial gradient of climate change. Ecologically, understanding these
rates of climate change is critical since the range limits of plants and animals are changing
in response to climate change. Additionally, species respond differently to changes in
climate due to varying tolerances and adaptability. A fully stochastic hierarchical model
is proposed that incorporates the inherent relationship between climate, time, and space.
Space-time processes are employed to capture the spatial correlation in both the climate
variable and the rate of change in climate over time.Directional derivative processes yield
spatial and temporal gradients and, thus, the resulting velocities for a climate variable.
The gradients and velocities can be obtained at any location in any direction and any
time. In fact, maximum gradients and their directions can be obtained, hence minimum
velocities. Explicit parametric forms for the directional derivative processes provide full
inference on the gradients and velocities including estimates of uncertainty. The model
is applied to annual average temperature across the eastern United States for the years
1963– 2012.Maps of the spatial and temporal gradients are produced aswell as velocities
of temperature change.

Supplementary materials accompanying this paper appear on-line.
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1. INTRODUCTION

The concept of climate velocity has emerged as a useful index for evaluating themigration
rates that might be required for populations to track changing climate (Loarie et al. 2009).
For a single environmental variable, say, temperature, this enables the notion of velocity of
climate change. The basic idea is to formulate an index of velocity of temperature change
in km/year over a large spatial region. It is developed from spatial gradients of temperature
change in ◦C/km and temporal rates of temperature change in ◦C/year. Dividing the latter
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by the former produces a velocity. We interpret the ratio as the instantaneous local velocity
along the earth’s surface needed to maintain constant temperature (Loarie et al. 2009).
For species with small tolerances, the velocity estimates closely approximate migration
speeds required to potentially avoid extinction. In this paper we introduce model-based
inference, providing a formal basis for climate velocity inference and prediction. Complex
topography is able to provide a spatial buffer for climate change (Peterson et al. 1997).
Therefore, locations with large elevation gradients have small velocities. We show how the
uncertainty in climate velocity varies depending on the spatial and temporal gradients. That
is, uncertainty in the estimate of velocity scales with velocity; locations with large velocities
have large uncertainties. These locations tend to have little change in topography and thus,
a minimal spatial buffer for climate change.

Impacts of climate change depend heavily on the relationship between the spatial het-
erogeneity and temporal change in climate. Species survival depends not only on the ability
to keep pace with a changing climate but also on the persistence of a suitable climate.
Spatial heterogeneity under a changing climate creates climate sources and sinks, which
create inaccessible regions to migrants tracking changing climates. Climate sources are
areas where locally novel climates are disconnected from areas where similar climates
previously occurred (Burrows et al. 2014). Sinks, on the other hand, are locations where
climate conditions disappear. The continuity and diversity of habitats within a mountainous
landscape provide a defense against the effects of climate change and facilitate species per-
sistence through time (Peterson et al. 1997). Landcover changes also play a significant role
in species movement. Protected areas where landscapes are less fragmented provide more
suitable conditions for species to keep pace with a changing climate (Loarie et al. 2009).
In fact, large protected areas can mitigate large velocities in some biomes, stressing the
importance of accurate estimates of climate velocities enabling informed land management
strategies.

To capture the relationship between spatial heterogeneity and temporal change in climate
and to obtain formal inference on velocity, one needs a stochastic model that encompasses
both spatial and temporal processes. The processes must be differentiable in order to obtain
instantaneous spatial and temporal gradients and velocities. Additionally, a stochastic model
allows for assessment of uncertainty in the processes, which propagates through to uncer-
tainty in the gradients and resulting velocities.

Thus far, applications in the literature are limited to simple ratios of empirical gradients
in space and time (Loarie et al. 2009; Burrows et al. 2011, 2014; Dobrowski et al. 2013).
From a process perspective, the work is purely descriptive and offers no explicit modeling
of the process. It therefore omits the joint linkage between temperature, time, and space.
There is no error structure, no likelihood, and thus, no formal inference. To illustrate, con-
sider temperature ≡ T = f (t) where t is time, i.e., a general relationship capturing the
change in temperature across time. Suppose temperature also varies with latitude, y, on a
continental scale such that T = g(y). In these approaches, calculations of ∂T

∂t and ∂T
∂y are not

instantaneous. Rather, they are done with finite differences as the cartoon in Fig. 1 suggests.
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Figure 1. A cartoon of the naive velocity calculation.

That is, velocity, vel, is expressed as

vel = ( f (t + �t) − f (t))/�t

(g(y + �y) − g(y))/�y
= �y

�t

( f (t + �t) − f (t))

(g(y + �y) − g(y))
. (1)

The fraction f/g is 1, i.e., the common�T , as the figure shows. Therefore�y is determined
for a common �T by aligning a given y with a given t and �t . Here, �y is the change in
latitude (northings) needed to provide the change in temperature that arises as time changes
from t to t +�t . Due to the finite difference calculations done with geographic information
systems (GIS) software, the foregoing papers find many �T ’s to be essentially 0 and make
an arbitrary correction to obtain finite velocities.Moreover, the discretization schemes intro-
duce additional uncertainty that will depend on scale. Lastly, ad hoc measures of uncertainty
arise only from variability when an ensemble of climate scenarios is considered rather than
from model mis-specification and measurement error.

The contribution of this paper is to cast the development of velocity in a fully stochastic
framework. A model-based approach allows us to calculate ∂T

∂t and ∂T
∂y . In modeling tem-

perature as a function of space and time, possibilities are considerable (e.g., Craigmile and
Guttorp 2011; Benth et al. 2007). However, the ability to explicitly calculate an enormous
number of instantaneous derivatives limits the scope of computationally feasible models.
We recognize that, at the least, we should express temperature, T , as a function of both loca-
tion and time, say T (x, y, t) where x denotes longitude, projected to eastings in kilometers,
y denotes latitude, projected to northings in kilometers, and t denotes time. We propose
a rich model for T (x, y, t), accounting for elevation and incorporating spatial structure,
anticipating that gradients, hence velocities, at close locations should be similar. Further,
the model proves full inference; we obtain estimates of uncertainty in the processes, as well
as the gradients and velocities.

A sufficiently smooth functional form for T legitimizes the notion of instantaneous veloc-
ity. In particular, the expected temperature surface, E(T (x, y, t)), is viewed as random, or
rather, as a realization of a stochastic process where process realizations are mean-square
differentiable (Banerjee and Gelfand 2003). This enables us to take partial derivatives of
expected temperatures. We model E(T (x, y, t)) coherently and within a Bayesian frame-
work to obtain full inference. Uncertainty in the surface yields uncertainty in the gradi-
ents, hence in the velocities. In particular, we calculate infinitesimal derivatives through
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a parametric specification for E(T (x, y, t)) rather than the descriptive finite differences
(1) obtained using geographic information systems (GIS) software (eight neighbor slope
and aspect calculation) (Burrough and McDonnell 1998). All inference on gradients and
velocities is obtained post-model fitting. Temperature gradients can be obtained at any time
and location and spatial gradients at any time and in any direction. Therefore, velocities
can be obtained at any location in any direction and any time. Ecologically, the direc-
tion and magnitude of the minimum velocity is meaningful as it captures what will be
required for survival at that location and time. The direction of maximum velocity is not
meaningful mathematically nor ecologically as there will be a direction where the spa-
tial gradient of temperature is essentially 0, yielding essentially infinite velocity in that
direction. Lastly, note that in Fig. 1, �y < 0 so vel < 0. According to the figure, this is
sensible; we need a negative change in latitude to provide a match with a positive change
in time. In general, for a given location and time, both the temporal and spatial gradi-
ent can be increasing or decreasing, which means velocity can be either positive or nega-
tive.

We model climate velocity using annual temperature data for the eastern United States
spanning 50years on 7.5min grid cells. Elevation is included to capture localized direc-
tional behavior of the spatial surface. We formulate a hierarchical model that incorporates
both sources of data and measurement error in temperature. The model is fitted introducing
three Gaussian processes to capture spatial dependence, two for the functional relation-
ship for temperature given time and one for elevation. Directional derivative processes
are employed to produce needed derivatives. There are two potential paths to imple-
ment the differentiation. The first is through formal directional derivative processes, i.e.,
limits of directional differences of a realization of a stochastic process (Banerjee et al.
2003). The other is through dimension reduction, here using the predictive process (Baner-
jee et al. 2008; Finley et al. 2009) which enables explicit parametric representations of
the process, hence explicit differentiation. For computational reasons, we adopt the lat-
ter.

The format of the paper is as follows. In Sect. 2 we describe the data used to develop
temperature velocities. We present the hierarchical model in Sect. 3. Section 4 details the
calculations for both spatial and temporal gradients as well as velocities. In Sect. 5 we
present the results of the data analysis, showing the broad range of inference available. We
conclude with a summary and description of future work in Sect. 6.

2. THE DATA

We apply the multivariate predictive process model developed in the next section to tem-
perature data for the eastern United States. The temperature data are from the parameter-
elevation regression on independent slopes model (PRISM). The data are the annual average
temperature (◦C) for the period 1963–2012. The PRISM data are on 2.5 arc-min resolution,
which we aggregate to 7.5 arc-min, or 1/8 degree resolution.We use the centers of these grid
boxes as our observed locations and the annual average temperatures as the observations.
While PRISM data have the benefit of large spatial coverage and high resolution, these
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Figure 2. (left) Two locations chosen that vary geographically and topographicallywith latitudinal bands imposed,
(middle) elevation across the latitudinal bands from north to south, and (right) annual average temperature trends
at the locations from north to south.

data also have limitations. For example, PRISM is an interpolated data product generated
from a model that incorporates multiple sources of information, including elevation. We
acknowledge the possibility of bias in the data, especially at high resolutions, which may
affect estimation of gradients and velocities. Nonetheless, our dataset for the eastern United
States consists of 21,202 spatial locations and, to our knowledge, there is no better temper-
ature data source available at such a large spatial scale. At a finer spatial scale, we could
explore an analysis using monitoring station data and we include this as a possible direction
of future work.

The elevation data are from the ETOPO1 dataset, which is a 1 arc-min global model
of the earth’s surface (Amante and Eakins 2009). We obtain the elevation at each of the
observed temperature locations. Figure 2 shows two latitudinal bands with one location
chosen on each band. Elevations across each band over the eastern United States are shown
along with time series of annual average temperatures over the 50years for the two loca-
tions. We see considerable variation in elevation as a result of the Appalachian mountain
range that spans from southwest to northeast. We also see variation in annual tempera-
ture.

We use the Albers equal-area conic projection to transform the longitudinal and lati-
tudinal coordinates of our observed locations to Albers coordinates employing the stan-
dard parallels of 29.5◦ and 45◦. These parallels are commonly used to depict the United
States. The projection yields eastings and northings in standard units (1 Albers unit ≈
6376km). Under this projection, we compute all distances as Euclidean distances. We
avoid working with distances on the earth’s surface due to the trigonometry associated
with such distances. The representations in terms of trigonometric functions make the
derivative calculations below considerably more messy and lead to ill-behaved model fit-
ting. For instantaneous derivatives, we anticipate that the effects of the projection on the
resultant posterior distributions for velocities at a given location and time will be min-
imal. In fact, Loarie et al. (2009) and Ordonez and Williams (2013) suggest velocities
are most sensitive to spatial resolution, which the Albers equal-area conic projection pre-
serves.
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3. MODEL

We model annual average temperature using a linear mixed model with spatially corre-
lated random effects. The model is inherently hierarchical as it combines two sources of
data, annual average temperature and elevation. Let T (x, y, t) be the annual average temper-
ature for location (x, y) at time t where x is the eastings coordinate and y is the northings
coordinate. Further, let E(x, y) be elevation at location (x, y). We model T (x, y, t) and
E(x, y) as

T (x, y, t) = β0 + β1t + β2y + β3Z(x, y) + α0(x, y) + α1(x, y)t + ε(x, y, t) (2a)

E(x, y) = μ + Z(x, y) + η(x, y), (2b)

where ε(x, y, t) ∼ N (0, σ 2
T) and η(x, y) ∼ N (0, σ 2

E). The coefficientsβ0,β1,β2, andβ3 are
global coefficients for the intercept, and the rate of change in annual temperature over time,
latitude, and elevation, respectively. Both α0(x, y) and α1(x, y) in (2a) are spatial random
effects that account for the local remaining spatial variation in annual average temperature
and rate of change in annual temperature over time that is not accounted for by latitude and
elevation. In other words, we have a spatially varying intercept and slope in our regression
on temperature (Gelfand et al. 2003). The spatial random effect, Z(x, y), in (2b) accounts
for the spatial variation in elevation and enters as a covariate not connected to t in (2a).
Complex topography is able to provide a spatial buffer for climate change, motivating the
need for both gradients and velocities to be functions of elevation. The three spatial random
effects, α0(x, y), α1(x, y), and Z(x, y) must be sufficiently smooth differentiable surfaces.
As such, these processes allow for gradients and velocities to be calculable at arbitrary
locations. Note that the specification of E(x, y) does not assume the observed elevation
surface to be smooth, but rather, specifies the “centering” surface to be smooth. Apart from
the fact that we need smoothness for differentiability, our focus is on continental-scale
velocity. We expect that a flexible, smooth process will capture the elevation surface at a
large spatial scale reasonably well. At a finer spatial resolution, a trend surface may be more
appropriate for the elevation surface and we include this investigation as a direction for
future work. Lastly, we do not introduce a longitudinal term in (2a) since elevation captures
the majority of the longitudinal variability of temperature in our study region.

As noted in the introduction, there are two approaches for modeling the three spatial
processes, α0(x, y), α1(x, y), and Z(x, y). One is to model them as customary Gaussian
processes, possibly dependent. Here, we would adopt a covariance function or cross-
covariance function such that process realizations are mean-square differentiable, e.g.,
Matérnwith ν ≥ 1 (Stein 1999). The spatial gradients would then be calculated as developed
in (Banerjee et al. 2003). A second approach is to model them using dimension reduction,
i.e., to express the surfaces as parametric linear transformations of a finite set of random
variables at fixed locations. With suitably differentiable functions, such a representation
enables explicit gradient calculation. We adopt the latter approach due to computational
necessity as we consider temperature at more than 21,000 gridded locations. We use the
predictive process for dimension reduction for each of the three spatial processes (Banerjee
et al. 2008). Anticipating customary association between slope and intercept, we employ
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coregionalization to connect slope and intercept processes in the mean temperature model.
The latent elevation process is treated as independent of these two processes.

3.1. THE PREDICTIVE PROCESS AS USED HERE

In the interest of dimension reduction, each of the foregoing spatial processes is
specified through a predictive process. For the spatial process for elevation, let Z =
[Z(x1, y1), . . . , Z(xn, yn)]′ where (xi , yi ), i = 1, . . . , n are the observed locations. The
predictive process is defined by specifying Z through projection onto a lower dimensional
subspace. The subspace is generated by realizations of Z at a set of locations, referred to as
“knots.” Let Z∗ = [Z(x∗

1 , y
∗
1 ), . . . , Z(x∗

m, y∗
m)]′ be the spatial process in lower dimension

where (x∗
j , y

∗
j ), j = 1, . . . ,m are the knot locations, and m << n. Banerjee et al. (2008)

and Finley et al. (2009) offer some discussion regarding knot selection and spatial design
for knot selection. Over our large spatial region, we adopted a simple geometric space filling
design with equally spaced knots. Here, Z∗ ∼ GP(0,CZ∗). The predictive process, denoted
˜Z, is the spatial interpolant of the process given the reduced-dimension process, Z∗, and is
induced by the original Gaussian process of interest. Realizations of the predictive process
are obtained using the “kriging” equation, or, rather as the conditional mean given the values
of the process at the knot locations. That is,˜Z = E(Z|Z∗) = C′

Z,Z∗(CZ∗)−1Z∗ whereC′
Z,Z∗

is an n × m matrix with (i, j)th element equal to the covariance between Z(xi , yi ) and
Z(x∗

j , y
∗
j ) and CZ∗ is the m ×m covariance matrix of Z∗ with (i, j)th element equal to the

covariance between Z(x∗
i , y∗

i ) and Z(x∗
j , y

∗
j ). This implies that the predictive process,˜Z, is

also a mean zero Gaussian process with covariance C′
Z,Z∗(CZ∗)−1CZ,Z∗ .

We specify the covariance function for the GP as Matérn with smoothness parameter
ν = 3/2. Explicitly, the covariance between Z(xi , yi ) and Z(x j , y j ), for any two locations
(xi , yi ) and (x j , y j ) is

Cov(Z(xi , yi ), Z(x j , y j )) = τ 2Z
(

1 + φZdi j
)

exp(−φZdi j ), (3)

where di j is the distance between locations (xi , yi ) and (x j , y j ), φZ is the spatial decay
parameter, and τ 2Z is the spatial variance parameter.

The spatial processes α0 and α1 provide an extremely flexible model for capturing
locally-linear relationship between annual average temperature, T , and time, t . Depen-
dence between the slope and intercept processes is anticipated (Berrocal et al. 2012) so
α0 = [α0(x1, y1), . . . , α0(xn, yn)]′ and α1 = [α1(x1, y1), . . . , α1(xn, yn)]′ are modeled
with a bivariate predictive process using a linear model of coregionalization. The coregion-
alization is defined as

[

α0

α1

]

= [A ⊗ I]

[

W0

W1

]

. (4)

Here, Wk = [Wk(x1, y1), . . . ,Wk(xn, yn)]′ for k = 0, 1 where W0 and W1 are indepen-
dent mean zero Gaussian processes with unit variance and decay parameters, φ0 and φ1,
respectively, and
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A =
[

a11 0
a21 a22

]

is a 2 × 2 lower triangular matrix with non-negative diagonal elements.
We employ predictive processes for both W0 and W1. Letting W∗

k = [Wk(x∗
1 , y

∗
1 ), . . . ,

Wk(x∗
m, y∗

m)]′ for k = 0, 1, then

˜Wk = C′
k(C

∗
k)

−1W∗
k

W∗
k ∼ GP(0,C∗

k), (5)

whereC′
k is the n×m cross-covariancematrix betweenWk andW∗

k andC
∗
k is the covariance

matrix of W∗
k . Again, we model covariance using the Matérn covariance function with

smoothness parameter equal ν = 3/2, decay parameter, φk , and scale parameter τ 2k fixed to
1 to enable identifiability of A. Using ˜W0 and ˜W1 in (5), we obtain [̃α′

0, α̃
′
1]′ by setting

[

α̃0

α̃1

]

= [A ⊗ I]

[

˜W0
˜W1

]

.

Both ˜W0 and ˜W1 are mean zero Gaussian processes which implies that both α̃0 and α̃1 are
also mean zero.

Finally, using the predictive processes we model T (x, y, t) and E(x, y) as

T (x, y, t) = β0 + β1t + β2y + β3˜Z(x, y) + α̃0(x, y) + α̃1(x, y)t + ε(x, y, t)

E(x, y) = μ + ˜Z(x, y) + η(x, y). (6)

In Sect. 4we show that the forms in (6) enable explicit calculation of gradients and velocities.

3.2. BAYESIAN DETAILS

Inference is obtained for the parameters of the hierarchical model within the Bayesian
framework. Let T = [T1, . . . ,Tn] where Tt is the vector of observed annual average
temperature for year t for all n locations such that Tt = [T (x1, y1, t), . . . , T (xn, yn, t)]′.
Similarly, let E = [E(x1, y1), . . . , E(xn, yn)]′ be the vector of observed elevations and
y = [y1, . . . , yn]′ be the vector of latitudes. Lastly, let W∗ = [W∗′

0 ,W∗′
1 ]′. Then, the full

posterior distribution of the parameters given the data is

π(β,Z∗,W∗,A,φ0, φ1, σ
2
T ,μ,τ 2Z, φZ, σ 2

E |T,E)∝
T

∏

t=1

π(Tt |β,Z∗,W∗,A,φ0, φ1, σ
2
T , τ 2Z, φZ)

×π(E|μ,Z∗, τ 2Z, φZ, σ 2
E)

×π(W∗|φ0, φ1)

×π(Z∗|φZ, τ 2Z)

×π(β,A, φ0, φ1, σ
2
T , μ, τ 2Z, φZ, σ 2

E).

(7)
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We assign prior distributions to all hyperparameters. Non-informative conjugate priors
distributions are used when possible. The coefficients βk for k = 0, . . . , 3 are assigned
independent mean zero normal prior distributions with variance 104. The diagonal elements
of theAmatrix, a11 and a22 are assigned independent, diffuse half-normal prior distributions
with parameter θ = 0.01, where the mean is 1/θ and variance is (π − 2)/2θ2. The off-
diagonal element, a21 is assigned a diffuse mean zero normal prior with variance 104. The
variance, σ 2

T, of the error term for the temperature model, ε(x, y, t), has a non-informative
conjugate inverse gamma (2,2) prior distribution.

The parameters of the elevation model, μ and τ 2Z, are also assigned conjugate non-
informative priors. The mean parameter, μ, has a mean zero normal prior distributions with
variance 104 and τ 2Z is again, conjugate inverse gamma (2,2). The variance of the elevation
model, σ 2

E, can also be assigned a conjugate inverse gamma distribution. However, we fix
σ 2
E = 10 since the vertical accuracy of the dataset is assumed to be ± 10m (Amante and

Eakins 2009).
A uniform prior distribution is assigned to each of the spatial decay parameters, φZ,

φ0, and φ1. Grid cell coordinates are given by eastings and northings under the Albers
projection. The maximum distance between locations is 0.4655 in Albers standard units
(≈2970km) and the minimum latitudinal distance is 0.0022 (≈13.9km). The values of the
uniform prior distributions for the decay parameters are such that the range is less than
1/2 the max distance and greater than the minimum latitudinal distance between locations.
We can do this easily by noting that, for the Matérn covariance function with smoothness
ν = 3/2, the relationship between the decay parameter and the range is φ ≈ 4.7/d. The
predictive process was fitted to 532 knots, gridded across the eastern US at roughly 0.0118
(75km) resolution.

4. CALCULATING GRADIENTS AND VELOCITIES

Here, we turn to the explicit calculations of the needed gradients. For the annual tem-
perature model, the temporal gradient of temperature change is the expected change in
temperature per year, whereas the spatial gradient is the expected change in temperature per
kilometer.A spatial gradient can be calculated in an arbitrary direction and time.Attractively,
the gradient in any direction can be calculated from the gradient in the easting direction,
∂E(T (x,y,t))

∂x , and in the northing direction, ∂E(T (x,y,t))
∂y . Let

∇E(T (x, y, t)) =
[

∂E(T (x,y,t))
∂x

∂E(T (x,y,t))
∂y

]

. (8)

Then, the gradient in the direction u, where u = [ux , uy]′ is a unit vector, is
∇E(T (x, y, t))′u. Evidently, the gradient in direction −u is the negative of the gradient
in direction u but the magnitudes will be the same. Furthermore, the direction of maximum
gradient is

∇E(T (x, y, t))/||∇E(T (x, y, t))||,
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where ||∇E(T (x, y, t))|| is the magnitude of the maximum gradient.
Let us develop the details of the gradients in termsofmodel (6).Returning to the predictive

processes, let P∗, Q∗, and R∗ each be m × m correlation matrices of Z∗, W∗
0, and W∗

1,
respectively, i.e., P∗

jk = ρ(d jk;φZ), Q∗
jk = ρ(d jk;φ0), R∗

jk = ρ(d jk;φ1). Again, φZ,
φ0, and φ1 are decay parameters of the Matérn correlation function with ν = 3/2 and
j, k = 1, . . . ,m. Further, define the m × 1 correlation vectors p(x, y), q(x, y), and r(x, y)
where the j th element of p(x, y) is the correlation between Z(x, y) and Z(x∗

j , y
∗
j ), similarly

for q(x, y) and r(x, y).
From (6), the expected annual average temperature at location (x, y) and time t is

E(T (x, y, t)) = β0 + β1t + β2y + β3˜Z(x, y) + α̃0(x, y) + α̃1(x, y)t

= β0 + β1t + β2y + β3˜Z(x, y) + [1 t]A

[

˜W0(x, y)
˜W1(x, y).

]

(9)

The spatial and temporal gradients at location (x, y) and time t are computed as the derivative
of the E(T (x, y, t)) with respect to x for the eastern direction, y for the northern direction,
and t for time. That is, ∂E(T (x,y,t))

∂x is the spatial gradient in the x direction, ∂E(T (x,y,t))
∂y is

the spatial gradient in the y direction, and ∂E(T (x,y,t))
∂t is the gradient in time.

The temporal gradient is

∂E(T (x, y, t))

∂t
= β1 + a21 q(x, y)′Q∗−1W∗

0 + a22 r(x, y)′R∗−1W∗
1, (10)

which is a spatial Gaussian process as it arises as the sum of two independent Gaussian
predictive processes. In fact, its covariance structure can be obtained explicitly; we omit
details. Moreover, it is free of t due to the linearity in (9), so we can display a single
posterior mean surface for this process.

To obtain the spatial gradients, first write the derivatives of p j (x, y), q j (x, y), and
r j (x, y) with respect to x and y. That is, the derivative of p j (x, y) with respect to x is
written as

∂p j (x, y)

∂x
= ∂

∂x
ρ((x, y), (x∗

j , y
∗
j );φZ)

= − φ2
Z(x − x∗

j )e
−φZ

√

(x−x∗
j )
2+(y−y∗

j )
2

.

Similarly, the derivative with respect to y is

∂p j (x, y)

∂y
= − φ2

Z(y − y∗
j )e

−φZ

√

(x−x∗
j )
2+(y−y∗

j )
2

.

The derivatives
∂q j (x,y)

∂x ,
∂q j (x,y)

∂y ,
∂r j (x,y)

∂x , and
∂r j (x,y)

∂y can be obtained in the same fashion.
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Then, the spatial gradients ∂E(T (x,y,t))
∂x and ∂E(T (x,y,t))

∂y are computed as

∂E(T (x, y, t))

∂x
= β3

∂

∂x
p(x, y)′P∗−1Z∗ + (a11 + a21t)

∂

∂x
q(x, y)′Q∗−1W∗

0

+ a22t
∂

∂x
r(x, y)′R∗−1W∗

1 (11)

and

∂E(T (x, y, t))

∂y
= β3

∂

∂y
p(x, y)′P∗−1Z∗ + (a11 + a21t)

∂

∂y
q(x, y)′Q∗−1W∗

0

+ a22t
∂

∂y
r(x, y)′R∗−1W∗

1. (12)

These quantities give the expected change in temperature per unit of distance in the x and
y directions, respectively, and are linear in t . As with the temporal gradient, the spatial
gradients are also spatial Gaussian processes, now each a sum of three predictive Gaussian
processes. The cross-covariance structure can be calculated explicitly as well as the depen-
dence between the spatial and temporal gradient processes. Again, we omit details. However,
we can compute gradients in arbitrary directions from (11) and (12) as described above.

Finally, we can obtain velocities from the spatial and temporal gradients. A climate
velocity for annual temperature is the ratio of the temporal gradient to the spatial gradient
and is measured in km/year. The velocity in direction u is

∂E(T (x,y,t))
∂t

∇E(T (x, y, t))′u
=

∂E(T (x,y,t))
∂t

∂E(T (x,y,t))
∂x u1 + ∂E(T (x,y,t))

∂y u2
. (13)

Clearly, in an absolute sense, the minimum velocity is the velocity in the direction of the
maximum gradient and is

∂E(T (x,y,t))
∂t

||∇E(T (x, y, t))|| .

As noted in the Introduction, we summarize only with minimum velocity, with justification
both mathematically and ecologically. Of course, since the numerator can be negative, we
will report both positive andnegative velocities.As a last point, velocity in a given direction is
also a spatial process. In fact, it is the ratio of predictive Gaussian processes. Such processes
have been referred to as spatial Cauchy processes (See Terres (2014) for details).

In summary, large velocities indicate large changes in temperature over time relative
to changes in temperature across space. Small velocities, on the other hand, indicate large
changes in temperature across space relative to changes in time. Locations with a steep
elevation gradient may see very small climate velocities since short distances lead to large
changes in elevation, and thus, may result in large changes in temperature.
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Table 1. The posterior median and 95% credible interval for parameters.

Parameter Median 95% Credible interval

β0 12.72 (12.68, 12.75)
β1 0.022 (0.019, 0.023)
β2 −0.862 (−0.866, −0.860)
β3 −0.680a (−0.690a, −0.669a)
W0 range 790.48b (769.18b, 814.32b)
W1 range 199.21b (192.04b, 205.14b)
a11 1.636 (1.556, 1.713)
a21 0.418 (0.381, 0.450)
a22 0.092 (0.081, 0.100)
σ 2
T 0.457 (0.455, 0.458)

μ 105.49 (99.89, 112.73)
Z range 165.50b (162.40b, 168.69b)
τ2Z 31,893 (30,593, 33,143)
σ 2
E 10

a Denotes ×10−2.
b Denotes value given in kilometers.

5. RESULTS

We obtain posterior samples using Markov chain Monte Carlo (MCMC) and a hybrid
Metropolis-within-Gibbs algorithm. The chains are run for 100,000 iterations and the first
half are discarded as burn-in. Details on the MCMC sampling algorithm are available in
the online supplementary material. See Banerjee et al. (2008) for additional information on
Bayesian implementation and computational issues for multivariate predictive processes.
Posterior estimates of the model parameters are given in Table 1. Overall, annual average
temperature is increasing between 1963 and 2012 and decreasingwith latitude and elevation.
The estimates of the range of the three spatial processes, given in kilometers and functions
of φ0, φ1, and φZ, indicate that the spatial correlation for the spatial process for elevation,
Z, operates at a much shorter distance than that for the spatial random intercept, α0. The
spatial correlation for the temporal gradient α1 is a function of that of W0 and W1 under
the linear model of coregionalization (4).

We present Figs. 10, 11 and 12 in the Appendix to offer some assessment of the models
for temperature and elevation. In general, we should not expect to capture high resolution
detail in annual average temperature and elevation due to the large spatial scale. Figure 10
gives the observed and fitted elevation surfaces indicating that our model is capturing the
main features across the eastern United States. Quantiles of residuals of annual average
temperature by year are shown in Fig. 11. Figure 12 shows the percent of under prediction
of annual average temperature for each location across the region. Not surprisingly, the
locationswith themost consistent under and over prediction are primarily in theAppalachian
Mountain region.

The posterior mean surface for the temporal gradient is given in Fig. 3. Between 1963
and 2012, the rate of temperature change appears greater in the northern part of the study
region than in the south or west. The average increase in annual average temperature is



Stochastic Modeling for Velocity of Climate Change 335

−95 −90 −85 −80 −75 −70

25
30

35
40

45

Temporal Gradient

−0.01

0.00

0.01

0.02

0.03

0.04

Longitude

La
tit

ud
e

Figure 3. Posterior mean surface for the temporal gradient (◦C/year).

0.016 ◦C/year, or 1.6 ◦C/century. The temporal gradient is significant at 97.67% of the
observed locations within the spatial domain where 96.68% are significantly increasing
and 0.89% are significantly decreasing. Here, we consider an estimate “significant” if the
90% credible interval does not include 0. We note that the credible intervals are determined
marginally not simultaneously.

Across the eastern United States, the spatial gradient in the eastern direction is signif-
icant at 82.47% of locations with 43.28% positive and 39.18% negative and at 89.38%
of locations in the northern direction with 15.05% positive and 74.33% negative (fig-
ures not shown). To illuminate spatial gradients, velocities, and uncertainties, we focus
on the southeastern part of the United States. Figure 4 shows the posterior mean sur-
face for the maximum spatial gradient. Locations along the Appalachian Mountains are
seeing temperature changes as much as 0.1 ◦C/km. Figure 5 shows the posterior mean
surface for elevation with arrows in the direction of the posterior mean maximum spa-
tial gradient at a subset of locations within the region relative to the temporal gradient
at the location. That is, under an increasing temperature trend, the arrow points in the
direction one would need to travel in order to maintain a constant temperature, which
is generally upwards and polewards. The maximum gradient for locations at higher ele-
vations is influenced by the direction of maximum increase in elevation. It appears that
elevation is the main driver for deviations from the northern trajectory of spatial gradi-
ents.

The posterior mean surface for velocity in the direction of the maximum spatial gradient
for the year 2012 is given in Fig. 6. Velocities range from −2.07 to 21.12 km/year, with
a median of 1.13 and 25th and 75th percentiles of 0.67 and 1.84 km/year, respectively.
Note that while velocities can be negative or positive, for graphical purposes, velocities
are shown as positive. As calculated here, a negative velocity is the result of a decrease
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Figure 4. Posterior mean surface for the magnitude of the maximum spatial gradient (◦C/km).
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Figure 5. Posterior mean surface for the elevation process, Z with arrows pointing in the direction of maximum
spatial gradient.

in temperature across time since the maximum spatial gradient is positive. Therefore, the
resulting positive velocity is of the same magnitude as the negative velocity but in the
opposite direction. Small velocities are more prevalent in mountainous regions, although
they are also seen in locations where the temporal gradient is negative (See Fig. 3). Larger
velocities are predominantly at locations with northern maximum gradients, and conse-
quently, lower elevations or regions with little change in topography. Loarie et al. (2009)
also report a strong correlation between topographic slope and the velocity of temperature
change.
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Figure 6. Posterior mean surface for velocity (km/year) in the direction of the maximum gradient evaluated for
the year 2012.

As previously mentioned, the impacts of climate change depend heavily on the relation-
ship between spatial heterogeneity and the temporal change in climate. In general, regions
with smaller estimates of velocities that are in mountainous landscape are much more favor-
able in terms of species persistence through time. At lower elevations, such as locations
within the Piedmont in North Carolina, our model yields velocity estimates greater than
1km/year, which may be faster than many estimates of plant migration. These maps, there-
fore, assist in highlighting extensive regions of heightened threat in terms of species survival.
They can also be used to direct management and preservation efforts in establishing suitable,
protected, and less fragmented landscapes for vulnerable species which have been shown
to mitigate the effects of climate change by reducing the resistance in species distribution
shifts.

Figure 7 shows the width of the 95% credible interval of the posterior distribution for
velocity in the direction of the maximum spatial gradient for 2012. The locations with large
values of uncertainty correspond to locations with large velocities shown in Fig. 6. Loca-
tions with small velocities, specifically in the mountainous region, tend to have much less
uncertainty. A time series of the posterior mean and 95% credible interval for velocity at
two illustrative locations is given in Fig. 8. The left figure is at a mountainous location
and shows a slightly increasing trend in velocity over time with little change in variabil-
ity. The right figure is at a non-mountainous location. Not only does this location report
an increase in velocity over time but also an increase in the variability of velocity over
time. This further illustrates that uncertainty in the estimates for velocity scale with veloc-
ity.

Lastly, Fig. 9 shows the posterior distribution for the directional velocities, both in
magnitude and direction, for the final year in the time series for the same two locations.
The length of the line depicts the magnitude of the change in temperature per kilome-
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Figure 7. Width of the 95% credible interval of the posterior distribution for velocity in the direction of the
maximum gradient for the year 2012.
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Figure 8. (left) Time series for the years 1963–2012 of the posterior mean velocity (km/year) and 95% credible
intervals for the two locations, mountainous (left) and non-mountainous (right).

ter and the direction of the line indicates the direction at which to travel to maintain
the current temperature. That is, these posteriors distributions are of the minimum veloc-
ity. The mountainous location is on the eastern slope and has very low velocity in the
uphill direction. Additionally, there is minimal angular variability in the estimate. The
non-mountainous location, on the other hand, has a northward velocity that is large in
terms of magnitude. It not only has much more uncertainty in the estimate for veloc-
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Figure 9. Posterior distribution for the directional velocities in the direction of maximum spatial gradient at the
mountainous location (left) and non-mountainous location (right) for 2012. The length of the line gives the velocity
(km/year) at which to travel to maintain the current temperature.

ity but also in the direction of maximum gradient signified by the high angular variabil-
ity.

6. DISCUSSION AND FUTUREWORK

We have rigorously formulated a stochastic specification for annual average temperature
which legitimizes calculation of infinitesimal gradients in time and space in order to create
infinitesimal velocities at arbitrary locations and times. In particular, we have developed
a hierarchical model that combines two sources of data, annual average temperature and
elevation. The resulting expected temperature surface is viewed as a realization from a
stochastic process. Directional derivative processes produce spatial and temporal gradients,
and the resulting velocities, in a fully stochastic framework with inference implemented
post-model fitting. Uncertainty in the spatial surfaces propagates uncertainty to all gradients
and velocities. We applied the model to 50years of annual average temperature data for the
eastern United States.

There are several directions for future work and extensions of the model. In terms of
temperature and velocities of climate change, we plan to develop more flexible models that
include spatially varying uncertainty and non-stationary covariance functions. With climate
scenarios from regional climatemodels (Mearns et al. 2009), we could project velocities into
the future. We could also incorporate multiple sources of climate data, such as monitoring
station data. In this regard, we could develop analyses at finer spatial scales usingmonitoring
station temperature data. This would allow us to work with topography at a finer resolution
and develop an elevation model using a trend surface. A finer-scale spatial model would
also enable more localized gradient and velocity assessment.

Another interesting direction of future work is joint modeling of climate variables, such
as temperature and precipitation. Dobrowski et al. (2013), for example, propose an ad hoc
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averaging method for computing velocities based upon three different climate variables.
They find variability in not only themagnitude of velocities for the different climate variables
but also the direction of minimum velocity. Joint process modeling in the spirit of our work
here would provide a sound stochastic framework for such inference.

Lastly, the velocities presented in this work deal with climate and have no immediate
connection to species. The velocities are speeds that are required to keep pace with climate
change, not migration rates across space. This is, in part, due to individual species having
varying tolerances and adaptability to changing climate. It would be useful to extend the
modeling to formulate species-level velocities. We are currently exploring this in terms of
change in intensity surfaces for point patterns of species locations, modeling the dynamics
in the intensities using advection and diffusion processes.
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7. APPENDIX

See Figs 10, 11 and 12
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Figure 10. (left) Observed elevation surface and (right) posterior mean elevation surface indicating that the model
is capturing the main features of elevation across the large spatial region. Again, our goal is not to estimate “true”
elevation but rather to create a differentiable surface for elevation to improve the estimation of the spatial gradients
of temperature.
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Figure 11. The upper and lower bounds of the middle 95% of residuals by year where the residuals are computed
as the observed minus the posterior mean of temperature conditional on the random effects. The model appears
to underestimate annual average temperature in the years 1990, 1998, and 2012. In general, however, there does
not appear to be a trend in over or under prediction through time indicating that the model adequately captures the
variability in annual average temperature.
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Figure 12. The percent of under predictions of annual average temperature for each location. Dark red (blue)
locations indicate that the model tends to under (over) predict annual average temperature. Regions with the most
consistent under and over prediction are predominantly in regions with highly variable elevation.
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