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Typical ecological gradient analysis for plant species considers variation in the
response along a gradient of covariate values, for example, temperature or precipitation.
Response is customarily modeled through the presence/absence or a suitable measure of
abundance or both. Such analysis enables the creation of a climate niche or range lim-
its for the species using this covariate. Interest often extends to two climate covariates,
thus seeking a climate niche in two-dimensional space. It also seeks to learn whether
the niche changes over life stages of the species. For instance, is the niche for juveniles
different from that for adults? Across the climate domain, where are seedlings relatively
more or less abundant than adults? Adult abundance is measured through basal area,
juvenile abundance through seedling counts. Our contribution is to describe a coher-
ent modeling approach to address the foregoing objectives. We construct a hierarchical
stochastic specification that jointly models juveniles and adults with regard to their
two-dimensional climate niches. Joint modeling of the abundance response surfaces is
proposed because seedlings and adults are living jointly, competitively and is justified
through exploratory analysis. Joint modeling can be challenging when one response is
counts and the other is area. We model adult abundance and then juvenile abundance
driven by adult abundance. Due to excess zeroes over our study plots, we employ zero-
inflated models for both adult and seedling abundance. We demonstrate the benefits
of the joint modeling through out-of-sample predictive performance. Our abundance
data come from the USDA Forest Service’s Forest Inventory and Analysis dataset. Our
climate data come from the 800 m resolution Parameter-elevation Regressions on Inde-
pendent Slopes Model dataset. In order to extract a response to climate, we aggregate
FIA plots to ecological subsections. At plot scale, micro-scale covariates explain vari-
ation in abundance; at a larger spatial scale, climate covariates can explain variation in
abundance.
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1. INTRODUCTION

A major problem in ecology is the development of species distribution models to under-
stand the relationship between species presence/absence or abundance and climate variables.
We consider species distribution models in the form of an abundance response surface for a
species over a domain of climates. The response surface provides insight into climates that
are more or perhaps less favorable for the species. Informally, the set of climates required for
a species to develop is referred to as the climate niche for that species and the extremes asso-
ciated with this niche are referred to as the range limits for that species. Importantly, climate
requirements can change over the life stages of a species, hence, so might the associated
response to climate surface.

Here, we consider two roughly defined life stages, seedling and adult, and propose joint
modeling to develop joint abundance response surfaces for the two stages. Seedling abun-
dance surfaces aremodeled through zero-inflatedmodels for seedling counts. In particular, to
capture heavy tails in abundance counts, we employ a zero-inflated Poisson–gamma model.
Adult abundance surfaces are modeled through zero-inflated models for basal areas. We
introduce a point mass at 0 and also employ a t-distribution to model heavier-than-Gaussian
right tails.

Altogether, we build a joint hierarchical model. Joint modeling is appropriate because
seedlings and adults are related through competition and seed dispersal. Evidence of strength
of dependence is illuminated in Sect. 3 below. However, to date, such joint modeling, with
one response discrete and the other continuous, has not been implemented in the literature.
Joint modeling enables us to clarify and quantify the nature of the dependence between
the abundance distributions for the two life stages as well as to more appropriately capture
the uncertainty in the response surfaces. We demonstrate the benefits of the joint model-
ing through out-of-sample predictive performance using root mean square predictive error
(RMSPE).

Often, in plant ecology, the focus is on adult responses since adult responses are viewed as
stronger than those for juveniles. Those studies which simultaneously model all life stages
operate under the simplifying assumption that all life stages respond similarly to environ-
mental stimuli (Collins and Carson 2004). However, such an assumption seems untenable
since, for organisms, requirements and sensitivity to environmental factors change during
their life cycle (Grubb 1977), encouraging formal investigation across different life stages
of a species. Changes of distribution during the lifespan of a species are sometimes referred
to as ontogenetic niche shifts (Chase and Leibold 2003). These shifts reflect changes in
resource availability, requirements, and the tolerance of the organism to extrinsic factors at
different stages of life. Customary terminology in this context suggests that a niche con-
traction occurs when species requirements are stricter in earlier stages and would be viewed
as indicative of recruitment failure; a niche expansion occurs when the circumstances are
reversed. Expansions are difficult to observe in practice because they would require exten-
sive planting of seeds where adults are currently absent. Here, avoiding such terminol-
ogy, we employ our response surfaces to investigate relative abundances of seedlings to
adults across the climate domain; where are seedlings relatively more or less abundant than
adults?
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There is a very large literature on species distributionmodels, explaining species presence
and abundance, introducing notions like habitat models, climate envelopes, range limits, and
niches, usually informally. Species distributionmodels study climate change impacts on for-
est biodiversity at regional scales (Botkin et al. 2007; Elith and Leathwick 2009; McMahon
et al. 2011; Bellard et al. 2012), yet few consider responses from both juveniles/seedlings
and adult trees (Bykova et al. 2012). A fundamental assumption for species distribution
models is that species distributions are retained over life stages, that is, niche conservatism
(Wiens andGraham 2005; Pearman et al. 2008;Wiens et al. 2010; Peterson 2011). Change in
species distribution has been studied in the context of species invasion (Broennimann et al.
2007; Beaumont et al., 2009; Gallagher et al. 2010; Petitpierre et al. 2012) and evolution
(Maiorano et al. 2013), but not at different life stages.

Again, ontogenetic shifts in environmental requirements for species occur when organ-
isms provide different distributions at different life stages (again, Chase and Leibold 2003).
Despite a large literature on such shifts in animals (reviewed by Werner and Gilliam 1984),
there is little direct evidence for how it affects migration potential of plants (Young et al.
2005). Field experiments provide support for ontogenetic shifts in physiology (Parrish and
Bazzaz 1985;Donovan andEhleringer 1991; Cavender-Bares andBazzaz 2000; Thomas and
Winner 2002; Bansal andGermino 2010;Kulmatiski andBeard 2013), demography (Poorter
1999; Eriksson 2002;Miriti 2006;Warren andBradford 2011), phenology (Yang andRudolf
2010), and functional traits (Butterfield and Briggs 2011; Herault et al. 2011; Houter and
Pons 2012; Palowet al. 2012) but few studies investigate biogeographic responses (Stohlgren
et al. 1998; Quero et al. 2008; Urbieta et al. 2011).

For tree species, seedlings and adult trees are usually not part of the same analysis.
Previous studies concentrate on either trees greater than a minimum diameter (e.g., Iverson
and Prasad 1998; Canham and Thomas 2010) or on seedlings (e.g., Ibanez et al. 2008, 2009).
Bertrand et al. (2011) consider modeling the probability of the presence of a species for each
of its life stages as a function of environmental indicators. However, they model each life
stage separately and consider only the presence/absence of the species, limiting opportunity
to directly compare responses of large and small trees and to infer ontogenetic shifts.

Different metrics are used in the ecology literature to capture species abundance at differ-
ent life stages. Biomass, captured through basal area, is appropriate for saplings and adults
(henceforth just referred to as adults), while counts are appropriate for seedlings/juveniles
since they have negligible biomass. As noted above, the standard approach in the litera-
ture is to specify separate models for each life stage. Again, we model different life stages
simultaneously and develop a fully coherent inferential framework. None of the studies that
we are aware of attempt to develop such an inferential framework for different life stages
of plant species. Furthermore, none of the studies consider interaction between the envi-
ronmental covariates to produce life stage appropriate abundance response surfaces over
climate space for the species. Instead, they produce response curves for each life stage of
the species for each of the climate covariates individually, and attempt to draw inference
about distributional changes based on the location and scale of these curves obtained across
the different life stages (Pyrke and Kirkpatrick 1994).

Again, we treat seedling count of a species in a plot as ameasure of its juvenile abundance
response to climate gradients, while the total basal area of the same species quantifies the



114 S. Ghosh et al.

Aggregated Basal area (in m2)

0 50 100 150

re
la

tiv
e 

fre
qu

en
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Aggregated seedling count

0 200 400 600 800 1000

re
la

tiv
e 

fre
qu

en
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

Aggregated Basal area (in m2)

0 50 100

re
la

tiv
e 

fre
qu

en
cy

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Aggregated seedling count

0 500 1000 1500 2000

re
la

tiv
e 

fre
qu

en
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Figure 1. Histogram of observed adult and juvenile responses, aggregated to ecological subsection level, over
the eastern US for a LITU and b QUAL.

adult abundance response with regard to the same factors. At our broad scale of climate
conditions, a high percentage of zeros is observed, necessitating zero inflation. In addition,
some geographic plots exhibit very large values for both abundance responses. So, a zero-
inflated Poisson–gamma mixture model is proposed to accommodate such behavior in the
seedling counts (see Ghosh et al. 2012 and references therein). To accommodate the same
issues for the continuous adult responses, we propose a zero-inflated truncated t-distribution
model for basal area. Figure 1 shows thehistogramof aggregatedbasal area andof aggregated
seedling counts at regional level (more precisely at ecological subsection level, see Sect. 2)
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for two relatively abundant species, Liriodendron tulipifera (LITU, henceforth) andQuercus
alba (QUAL, henceforth). At this geographical scale, 55 and 60 % of the areal units register
the absence of LITU adults and juveniles, respectively, while QUAL adults and juveniles are
absent in 22 and 31% of the areal units, respectively. These reveal the potential need for zero
inflation. Below, we show that our proposed zero-inflated joint model performs substantially
better than standard ones, asmeasured by rootmean square predictive error.We further show
that our climate covariates alone cannot explain the heavy right tails in the figure. We will
do better with a Poisson–gamma mixture and a t distribution with low d.f., respectively.

The format of the paper is as follows. Section 2 describes the data weworkwith. Section 3
details the model specification. Section 4 provides the analysis of the data, while Sect. 5
concludes with a brief summary.

2. DETAILS OF THE DATASET

The USDA Forest Service’s Forest Inventory and Analysis (FIA) program is the primary
source for information about the extent, condition, status, and trends of forest resources in
the United States (Smith et al. 2009). FIA applies a nationally consistent sampling protocol
using a quasi-systematic design covering all ownerships across theUnited States, resulting in
a national sample intensity of one plot per 2428 ha (Bechtold et al. 2005). Satellite imagery is
used to stratify the population (in an attempt to increase the precision of population estimates)
and to establish permanent inventory plots in forest land uses. Forested land is defined as
areas at least 10 % covered by tree species, at least 0.4 ha in size, and at least 36.6 m wide.
FIA inventory plots that are established in forested conditions consist of four 7.2 m fixed
radius subplots. Three of these subplots are arranged in a triangular configuration with one
subplot in the center (Bechtold et al. 2005). All trees (standing live and dead) with a diameter
at breast height (dbh) of at least 12.7 cm, are inventoried on forested subplots. Within each
subplot, a 2.07-m-radius microplot offset 3.66 m from subplot center is established. Within
each microplot, all live tree seedlings are tallied according to species.

In this analysis, FIA data were extracted from the most recent annual inventories (1999
to 2008) in 31 eastern states for a total of 43,396 inventory plots (available online, http://
fia.fs.fed.us/, from FIADataBase version 4.0, extracted on March 16, 2010). To compare
species abundance in different life stages, we adopted the FIA guideline to divide the data
into two size classes: (1) seedling (dbh < 2.54 cm) and (2) tree (dbh ≥ 2.54 cm). For each
species, we extracted the seedling count and tree basal area in each plot. The condition
delineation in the FIA database was used to identify fully forested plots that have both the
seedling and tree survey. Thus, for every species we have 43,396 zero or non-zero complete
seedling count or tree basal area records. In other words, the zero record in our dataset is
a “true zero” (Martin et al. 2005), indicating that the plot was sampled, but no individual
(seedling or tree) was found.

This region covers climate conditions varying from hot and moist in the region adjacent
to the Gulf of Mexico to cold and dry in the region adjacent to the Great Lakes system.
Species response over such a broad geographic domain, hence climate domain, has not been
available before. In particular, the climate data in this study were extracted from the 800 m

http://fia.fs.fed.us/
http://fia.fs.fed.us/
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resolution Parameter-elevation Regressions on Independent Slopes Model (PRISM) dataset
(available online, http://www.prism.oregonstate.edu/). PRISM is recognized as a high qual-
ity spatial climate dataset, employing a sophisticated interpolation, using meteorological
station data, to produce digital grid estimates of climatic parameters, with consideration of
location, elevation, coastal proximity, topographic facet orientation, vertical atmospheric
layer, topographic position, and orographic effectiveness of the terrain (Daly et al. 2008).

In each plot, corresponding to the FIA measurement, we used the climate data from the
previous year to create the climatic covariates. Again, we build climate niches over two
climate dimensions so we extracted two illustrative choices, the mean annual precipitation
(mm) and the mean winter temperature (◦C), defined as the average of January, February,
and March maximum and minimum monthly values.

Canham and Thomas (2010) assert that climate does not matter with regard to inter-plot
variation of abundance for plots in close proximity, that variation in abundance at plot level
depends more on micro-scale covariates like soil moisture, nutrient availability, and so on.
Regional climatological covariates are smoothed over a broad geographical area leading
to a misalignment between climate and plot-level plant abundance data. Consequently,
abundance varies along climate gradients at regional scales (Iverson and Prasad 1998), but
not at plot scales (Canham and Thomas 2010). We, therefore, follow the idea similar to
Iverson and Prasad (1998) to aggregate plot-level FIA data to a scale more compatible with
regional climate data (Zhu et al. 2014).

More precisely, we use the concept of ecological subsections, as created in the FIA
database (and shown in Fig. 2a). These subsections define regions of unique ecological
characteristics that differ from neighboring units across the United States (Cleland et al.
1997). Within this national framework, the ecological subsection is specifically defined as
an area of similar surficial geology, lithology, geomorphic process, soil groups, subregional
climate, and potential natural communities, and its boundaries usually correspond with
discrete changes in geomorphology (Keys et al. 2007). In our study area of the eastern
United States, there are 427 ecological subsections, as described in detail by McNab et al.
(2007). The ecological subsections are not of the same size since they aggregate varying
numbers of plots.

With regard to the responses, we aggregated the plot-level data (n= 43,396) to the eco-
logical subsection level (n = 427) by summing the seedling counts and tree basal areas.
Environmental variables were obtained by averaging precipitation and temperature of plots
within each ecological subsection. The resultant covariates ranged from approximately 500
to 1700 mm/year for precipitation, from roughly −10 to 20◦C for temperature (Fig. 2b and
2c). The sampling area of an ecological subsection was considered as the total area of plots
within that region, not its actual geographic area.

3. MODEL DETAILS

3.1. JOINT MODEL SPECIFICATION

Let Yi and Zi , respectively, denote the cumulative seedling count and cumulative basal
area in ecological subsection i, i = 1, 2, . . . , n(n = 427). We build our joint specification

http://www.prism.oregonstate.edu/
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Figure 2. a Map of 427 ecological subsections spread across the 31 states of the eastern United States with a
spatial map of b annual average precipitation and c mean winter temperature at ecological subsection scale.

by modeling Zi and then Yi given Zi . Again, because both responses contain a considerable
number of zeros, we propose tomodel the former as a zero-inflated Poisson–gammamixture
and the latter as a zero-inflated truncated t-distribution. The seedling model has two sources
of zeros, one coming from a Bernoulli occurrence model, reflecting the climate suitability
of the ecological subsection, and the other obtained from the Poisson abundance model,
reflecting random absence.

Similarly, we model basal area as a zero-inflated truncated distribution. To provide a
distributional specification, we performed an exploratory data analysis on the basal area
data, regressing the observed non-zero basal area density values (observed total basal area
in an ecological subsection scaled by the number of plots in that ecological subsection) on
temperature and precipitation, for a collection of species. For two illustrative species, LITU
and QUAL, probability plots of the residuals obtained for a standard normal distribution
and for a t distribution with 3 d.f. are shown in Fig. 3.1 We see that the t3-distribution

1A heavier than normal tail is needed which we capture through a t distribution with low d.f. We use d.f.=3 in the
sequel but there is little sensitivity to this choice.
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Figure 3. Probability plots of the residuals obtained for non-zero basal area responses, standard normal and t3,
for a LITU b QUAL.

better captures the heavier right tail of the residuals which, in turn, helps with regard to
potential under-prediction of large basal areas in the dataset. The left truncation of the t3
will automatically handle the left tail.

We denote the climate covariates, here, temperature and precipitation observed in eco-
logical subsection i , by xi , with the area of that subsection denoted by Ai = ni |A| recorded
in hectares, where |A| is the common plot area (for seedlings this is 0.0054 ha, for basal
area it is 0.0672 ha) and ni is the number of plots in ecological subsection i .

First, we model the Zi . In fact, we assume

Zi = 0 with probability pz

= ni |A| w̃i with probability 1 − pz, (1)

where wi ∈ R
1 is a latent variable with w̃i= Max(0,wi ). From (1), the wi and w̃i are

interpreted as per hectare basal area, with |A| denoting here the common plot area for
adult responses. We model wi ∼ tv(μ

(w)
i , σ (w)), i.e., as a t-distribution with v = 3 d.f.,

location μ
(w)
i and scale σ (w). Evidently, (1 − pz)|A|E(w̃i ) is the per plot expected basal

area for ecological subsection i , while we can think of |A|μ(w)
i as a latent per plot expected

basal area for that subsection. We model μ
(w)
i ≡ h(xi ,β) = β0 + β1 temperaturei +

β2 precipitationi +β3 temperature2i +β4 precipitation2i +β5 temperaturei ×precipitationi .
Why do we choose this form? Exploratory analysis yielding the contour plots of the loess

smoothed per hectare basal area surface (shown in Fig. 4a for LITU and Fig. 4c for QUAL)
and the loess smoothed log seedling abundance (shown in Fig. 4b for LITU and Fig. 4d for
QUAL) vs. the climate covariates is performed. Fig. 4a and c motivate a quadratic form in
the covariates for the mean per hectare basal area surface.2 The bounding polygon is the
convex hull of available temperature and precipitation combinations over the region. Under
this formulation, the probability of the absence of basal area is given by

2More complex surfaces over climate space could be examined but, illustratively, we confine ourselves to quadratics
here.
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Figure 4. Loess smoothed abundance surfaces in the climate space for a basal area per hectare for LITU b
logarithm of per hectare seedling abundance for LITU c basal area per hectare for QUAL d logarithm of per
hectare seedling abundance for QUAL.

P(Zi = 0) = pz + (1 − pz)P(wi ≤ 0),

clarifying the zero-inflation role of pz .
Turning to the seedling abundances, let G(yi |Aiλi ) denote the Poisson mass function

associated with the count random variable Yi . The associated zero-inflated distribution is
then defined as

π(yi |py,i , λi ) = py,iδ{0} + (1 − py,i )G(yi |Aiλi ). (2)

Here, δ{0} is the delta function at 0 and (1 − py,i )λi is the expected number of seedlings
per hectare in ecological subsection i . We can think of (1 − py,i )|A|λi as the expected
number of seedlings per plot in ecological subsection i , where now |A| is the common plot
area for seedlings. Given xi and wi , λi is assumed to follow a Gamma distribution with
mean μ

(y)
i and variance bμ(y)

i denoted as λi ∼ Gamma(μ(y)
i /b, b), where logμ

(y)
i = θ0 +

θ1 temperaturei+θ2 precipitationi+θ3 temperature2i +θ4 precipitation2i +θ5 temperaturei×
precipitationi +ηw̃i . Again, we propose a quadratic specification, nowmotivated by Fig. 4b
for LITU and Fig. 4d for QUAL.



120 S. Ghosh et al.

basal area per hectare

re
si

du
al

-4

-3

-2

-1

0

1

2

3

4

basal area per hectare
0 1 2 3 4 5 6 7 8 0 2 4 6 8 10 12

re
si

du
al

-4

-3

-2

-1

0

1

2

3

4

(a) (b)

Figure 5. Residual plot of fitted log seedling abundance vs. basal area per hectare a LITU b QUAL.

Note that we use w̃i in this specification since this is the actual adult basal area at
ecological subsection i that is affecting seedling abundance and η is the coefficient that joins
the basal area surface to the seedling abundance surface.Here,wemight consider introducing
a transformation of basal area into the mean for log seedling abundance. However, Fig. 5
presents a plot of the residuals from log seedling abundance for the positive abundances
under the foregoingmean specification vs. basal area per hectare. There is nothing to suggest
need for more than a linear term in basal area.

With regard to spatial dependence among the residuals obtained at the ecological subsec-
tion level, we ran Moran’s I test for both non-zero basal area density (as obtained in Fig. 3)
and non-zero log seedling abundance (as obtained in Fig. 5) for both LITU and QUAL.
We used a weight matrix with 1s denoting the four nearest neighbors for each ecological
subsection in the computation of Moran’s I. For the four tests, the smallest p− value was
0.11 indicating no need to include spatial autocorrelation in the model.

Returning to py , for a set of 25 species, using simple 2×2 tables over the 427 ecological
subregions (not shown), the probability of the presence of seedlings given the presence of
adults ranged from 0.71 to 0.96. This again supports the need for joint model but, further-
more, suggests that, for the Bernoulli occurrence model, we can posit a logit specification
for py in basal area, logit(pyi (wi ;α)) = α0 + α1δ{w̃i>0}. We have investigated inclusion
of the climate covariates in both pz and py ; overfitting arises yielding very badly behaved
model fitting.

3.2. PRIORS AND MODEL FITTING

Wespecify aNormal(0, 100) prior on the each of the regression parametersβ, θ , η, α0 and
α1. pz is assumed to follow Uniform(0,1) distribution. Once again wi is interpreted a latent
per hectare basal area and hence can be unrestricted. Model fitting is done through Markov
chainMonte Carlo.We achievewell-behavedMCMCwith better acceptance if we center the
prior of σ (w) properly. To that end, we estimate the variance of the residuals obtained during
the exploratory data analysis. We then propose a Gamma prior on σ (w) which is centered at
this empirical residual variance but with large uncertainty (prior variance is set at 100).
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To facilitate computation, we introduce auxiliary binary variables ri ∼ Bernoulli(pz) in
the basal area model (1). That is,

Zi = 0 if ri = 1

= w̃i if ri = 0. (3)

In other words, P(Zi = 0|ri = 1) = pz but if ri = 0 we can still have Zi = 0. In particular,
whenever Zi > 0, the associated ri = 0. For the Zi = 0, we can have ri = 0 or 1 and we
update ri , i.e., ri |Zi = 0 from its full conditional distribution, aBernoulli( pz

pz+(1−pz)P(wi≤0) ).
The full conditional of pz is given by Beta(

∑n
i=1 ri + 1, n − ∑n

i=1 ri + 1).
The latentwi ’s are updated as follows.When ri = 1,weupdatewi from its full conditional

given by
[Yi |α, θ , η, xi , wi ][wi |xi ,β, σ (w)], with the first term obtained after marginalizing over λi .
When ri = 0 we write

wi = ui if zi = 0

= zi/Ai if zi > 0.

So, the ui ’s enter into the model as parameters and are drawn from truncated t3 full con-
ditionals. Once the wi ’s are updated, β and σ (w) are updated from their full conditionals
using the current values of the wi ’s. We update θ by first integrating out the λi s and then
drawing from p(θ |η,α, {Yi }, {wi }, {Zi }). η, α0 and α1 are updated in similar fashion. Three
parallel chains were run and convergence was assessed using the Gelman–Rubin criterion
(Gelman and Rubin 1992). For the FIA analyses presented below, their R̂ statistic ranged
from 1.0002 (for α1 for both LITU and QUAL) to 1.026 (for pz associated with LITU).

3.3. RESPONSE SURFACE ESTIMATION

The fitting procedure described in Sects. 3.1 and 3.2 produces samples from the joint pos-
terior of
 = {wi }, θ , η,β, σ 2

w, α0, α1, pz |{Yi }, {Zi }. The set of samples enables a posterior
sample of response surfaces. We overlay a fine grid of cells on the climate space fromwhich
we calculate a posteriormedian surface by taking themedian value for each cell. Hence, after
the model fitting, we obtain two posterior predictive median abundance response surfaces,
one for adults and one for seedlings, over x = (temperature, precipitation). In displaying
these surfaces, we confine the domain to the convex hull of observed temperature and precip-
itation in our study region. We prefer posterior median surfaces to posterior mean surfaces
due to the right skewness that occurs to the mean when we exponentiate the log abundance
surfaces.

More explicitly, with regard to adults, for each posterior realization of β, we obtain an
intensity surface, using h(x;β) below (1) evaluated at each x j . Next, with a posterior draw
of σ (w) we can use the t3 distribution to draw a w surface, hence a w̃ surface. With B
posterior draws we obtain B such surfaces. Taking the median at each x j , we obtain the
median basal area per hectare response surface.

For the response surface for the seedlings, we need to marginalize [λ|θ, η, x, w] over w

to obtain the corresponding median surface. To that end, once we generate a realization of



122 S. Ghosh et al.

the w̃ for a particular x j (as above), we plug that into the expression forμ(y) given below (2),
along with posterior realizations of θ . Then, with a draw of b, using the gamma distribution,
we obtain a predictive realization of λ. Doing this across the x j , we obtain a posterior λ

surface. Then, with B posterior draws we obtain B such surfaces. Taking the median at each
x j , we obtain the median number of seedlings per hectare response surface.

4. ANALYSIS OF FIA DATA

For a collection of 25 species, the FIA dataset was randomly partitioned into a training set,
containing 382 observations with the remaining 45 observations included in a test dataset
to cross-validate the predictive ability of the posited model. We use posterior predictive
medians, Ỹi and Z̃i , as point estimates of the predicted seedling and basal area abundance,
respectively, at the areal level. To further justify the joint modeling through the inclusion of
basal area in the seedling model, for each species we report the associated root mean square
predictive error associated seedling abundance for two models, one with basal area as a
covariate (the joint model) and the other without basal area as a covariate (the independence
model). The RMSPEs are defined as follows:

RMSPE joint model =
⎛

⎝ 1

|T |
∑

j∈T
(Y j,obs − Ỹ j, joint )

2

⎞

⎠

1/2

RMSPEindependence model =
⎛

⎝ 1

|T |
∑

j∈T
(Y j,obs − Ỹ j,independence)

2

⎞

⎠

1/2

,

where T is the set of data points belonging to the test dataset, |T | is the cardinality of
the test dataset, Y.,obs is the observed seedling abundance, Ỹ., joint and Ỹ.,independence are
the posterior predictive medians of seedling abundance obtained from the joint model and
independence model, respectively. The results, shown in Table 1, suggest that inclusion of
basal area in the seedling model significantly improves predictive performance for seedling
abundance for the illustrative two species. TableA1, in the appendix, further suggests that the
joint model provides substantially improved predictive performance for almost all species,
reaching as much as 55 % for Pinus strobus.

LITU is considered to be relatively widespread; however, its adults do not perform
well under suboptimal moisture conditions. They respond better to moderately moist, well

Table 1. Root mean square predictive error associated with predicting seedling abundance for the joint model
and the independence model.

Species name RMSPE for seedling model
including basal area

RMSPE for seedling model
without basal area

Liriodendron tulipifera 56.46 89.02
Quercus alba 106.09 193.78
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drained, and loose textured soil. LITU rarely does well in very wet or very dry situations
(McCarthy 1933; Della-Bianca and Olson 1961). The juveniles need adequate soil moisture
to survive and become established. Seedling development is better in well-drained mineral
soil with sufficient availability of soil moisture. Extreme moisture conditions (too wet or
too dry) are detrimental to seedling development (McAlpine 1961).

QUAL is an important lumber tree and is widespread across eastern North America. It
is found from southwestern Maine to southeastern Minnesota all the way south to northern
Florida and eastern Texas. The optimum range forQUAL is in theOhioValley and the central
part of the Mississippi Valley (Minckler 1965). QUAL adults grow best on moderately
dry slopes with shallow soils (Della-Bianca and Olson 1961). Preferred temperature for
germination is between 10 to 16◦C (Bell 1975). However, soil moisture is not a critical
determinant of seedling survival and seedlings persist equally well in dry and moist sites
provided they have access to adequate sunlight (Minckler 1965).

As noted in Sect. 1, at ecological subsection level, the LITU basal area and seedling
count data includes 55 and 60 % zeroes, respectively. For QUAL, the percentages of zeros
for basal area and seedling counts are about 22 and 31 %, respectively.

In Fig. 6, we present the contour plots of the posterior predictive median abundance
surfaces for the two life stages and for the two species, restricted to the convex hull of
the observed locations in climate space. Figure 6a shows the posterior predictive median
surface of the basal area per hectare of LITU adults. The circles indicate the locations (in
the climate space) where LITU adults were observed. Figure 6b is the posterior predictive
median seedling count per hectare for LITU juveniles, again with the circles indicating the
climate coordinates of the occurrence of LITU juveniles. Figure 6c, d mimics Fig. 6a, b),
but now for QUAL adults and juveniles, respectively.

For the LITU adult abundance response surface (Fig. 6a), wetter and moderate tem-
peratures are preferred. Elliptical contours are suggested, i.e., constancy of gradients on
ellipses within the convex hull. The magnitudes of the contours suggest diminished per-
formance of LITU adults under too moist or too dry moisture conditions, in agreement
with the foregoing findings of McCarthy 1933 and Della-Bianca and Olson (1961). The
contours associated with the abundance surface for LITU juveniles (Fig. 6b) suggest their
preference for moderate temperature and more average precipitation, a temperate climate.
The completed elliptical contours suggest that the abundance surface drops off in all direc-
tions from temperate climate within the observed set of locations. This is in accord with the
above-mentioned stricter moisture requirements for LITU juveniles to develop.

Turning to the ratio plot (Fig. 7), the intent is to provide a visual comparison between the
previous two plots. Again the more variability we see in the ratio surface, the more differ-
ence there is between the abundance surfaces for the two life stages, the more evidence of
ontogenetic shift in climate requirements. Figure 7a shows the contour plot of the logarithm
of the ratio of posterior predictive median of seedling counts per hectare to that of the basal
area per hectare for LITU. We see that the most favorable ratio for juveniles is associated
with lower to average precipitation regions in climate space, while for adults the ratio is
most favorable for wetter conditions.

The highest intensity for the responses of QUAL adults occurs in the north-east corner
of the convex hull (Fig. 6c) indicating a preference for warm and wet climate conditions, in
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Figure 6. Contour plots of the posterior predictive medians of a basal area per hectare for LITU adults, b log
seedling counts per hectare for LITU juveniles, c basal area per hectare for QUAL adults, d log seedling counts
per hectare for QUAL juveniles. The circles indicate the occurrences of adult and juvenile responses in the convex
hull of the observed climate space.
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Figure 7. The contour plot of the logarithm of posterior predictive median ratio of the juvenile abundance to that
of the adult abundance for a LITU and b QUAL.

agreementwith the foregoing ecological habitat discussion. Rough constancy of gradients on
ellipses within the climate convex hull is suggested by the contours. The contours associated
with QUAL juveniles (Fig. 6d) imply a saddle surface. It seems that juveniles do well in
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Figure 8. Plot of logarithm of median predicted responses and logarithm observed responses for a LITU adults
b LITU juveniles c QUAL adults and d QUAL juveniles for the test dataset. The solid line is the 45◦ line.

both dry and moist sites provided the temperature ranges between 7 to 12◦C. A slight
preference for moist sites is also indicated. This finding concurs with Minckler (1961) who
documented 98 % seedling survival when available soil moisture was 19 % of oven dry soil
weight as against 87 % survival at 3 % available soil moisture. While the surfaces appear
quite different, overall, they reveal that both QUAL adults and juveniles are more abundant
in the warm and relatively moist climate.

As for the ratio plot for QUAL (Fig. 7b), we see a considerable difference compared
with Fig. 7a for LITU. In Fig. 7b, again we see a relatively strong preference of adults
for temperate climate. However, the climate requirement for both stages does not change
widely. There is much more difference in the life stage abundance surfaces for LITU. We
would assert that there is much stronger evidence for an ontogenetic climate shift for LITU.

Plots of the logarithm posterior predictive medians of abundances vs. logarithm of
observed non-zero abundances for both life stage for both species are provided in Fig. 8.
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Table 2. Posteriormean and 95% credible interval (in parenthesis) for themodel parameters for LITU andQUAL.

Parameters Posterior summary for LITU Posterior summary for QUAL

β0 1.08 (0.92, 1.25) 1.65 (1.47, 1.82)
β1 −0.04 (−0.23, 0.14) 0.28 (0.05, 0.53)
β2 0.39 (0.24, 0.56) 0.23 (0.01, 0.46)
β3 −0.48 (−0.60, −0.36) −1.59 (−1.77, −1.42)
β4 −0.34 ( −0.51, −0.16) −0.09 (−0.39, 1.93)
β5 0.44 (0.21, 0.66) 0.39 ( −0.01, 0.78)
σw 0.62 (0.05, 1.92) 0.73 ( 0.06, 1.88)
pz 0.03( 0.002, 0.05) 0.0001 (0.00002, 0.0003)
θ0 4.68(4.65, 4.73) 4.79 ( 4.74 4.83)
θ1 1.09 (1.03, 1.16) 0.39 ( 0.31 0.49)
θ2 −0.48 (−0.53, −0.39) −0.38 (−0.42 0.37)
θ3 −1.23 (−1.31, −1.16) −0.73 (−0.79, −0.65)
θ4 −0.19 (−0.25, −0.14) 0.37 ( 0.33 0.47)
θ5 0.31 (0.20, 0.42) −0.008 (−0.07 0.04)
η 0.31 (0.29, 0.35) 0.30 (0.27 0.32)
α0 3.08 ( 1.98, 4.25) 2.69 ( 1.28 4.09)
α1 −4.97 ( −6.26, −3.68) −4.62 ( −6.05 −3.17)

These plots are over the 45 ecological subsections that constituted the test dataset. They
reveal a noisy fit for basal area with a somewhat better fit for seedling counts.

We present the post-convergence posterior summaries for themodel parameters for LITU
and QUAL in Table 2. Although direct interpretation of the model parameters is difficult
in the presence of the interaction term, the significant negativity of the quadratic terms
provide further justification for the specification of quadratic mean surface model for both
the adult and juveniles responses. Perhaps more importantly, the strong significance of η for
LITU and for QUAL suggests the importance of using basal area to explain seedling counts.
Moreover, the significant large negative values of α1 for the two species have an expected
interpretation; more basal area implies less chance of seedling absence. These α’s further
reveal the importance of specifying a joint model for adult and juvenile presences.

Finally, Table 2 shows that pz is negligible for QUALwhile explaining only 3 % of zeros
for LITU. It seems that, in accordance with the findings of Canham and Thomas (2010), at
subsection scale, the climate covariates are adequate predictors of species occurrence. So,
perhaps for these species, zero inflation was not needed but we would not have learned this
without fitting our models and it might be more important for other species.

5. SUMMARY

We have developed a joint model for abundance at two life stages for trees, basal area
for adult trees and counts for seedlings, in response to climate, characterized by average
precipitation and mean winter temperature. We have argued for the need and demonstrated
the benefit of formulating a joint model. We have shown how these abundance response
surfaces can be employed to investigate change in distribution between the two life stages.
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We have illustrated this for two species, revealing different climatic requirements of adult
specimens as compared to their juvenile counterparts.

Futureworkwill plan to provide a user friendlyR-package tomake thismodel fittingmore
accessible to ecologists. In this context, ecologists will be able to extract readily interpreted
niches from the posterior predictive median surfaces (as in Fig. 6) by suitable thresholding
of temperature and precipitation. A further future objective will be to investigate alternative
climate predictors as well as the possible extension to include a third predictor in specifying
adult and juvenile response surfaces. We also can look at the effect of aggregation, starting
at plot level and building larger areal units, in terms of strength of climate signals.

More generally, we have proposed a framework that can jointly model zero-inflated con-
tinuous and count data. Other applications of such modeling are possible. For instance, over
multiple geographic regions and over time, we can jointly model the number of precipitation
events (in a year) exceeding a certain threshold and average annual precipitation. Such joint
model can inform us not only about the increase in the frequency of extreme events over
time but also about the magnitude of these extreme events.

[Received December 2014. Accepted October 2015. Published Online November 2015.]

APPENDIX: RSMPES FOR 25 SPECIES

See Table 3.

Table 3. Root mean square predictive error associated with predicting seedling abundance for the joint model
and the independence model.

Species name RMSPE for seedling
model including
basal area

RMSPE for seedling
model without basal
area

Liriodendron tulipifera 56.46 89.02
Quercus alba 106.09 193.78
Pinus taeda 106.10 110.18
Fraxinus americana 119.57 129.79
Fraxinus nigra 197.24 260.73
Liquidambar styraciflua 94.46 137.81
Larix laricina 31.2 43.86
Amelanchier medik 42.59 52.34
Nyssa sylvatica 55.91 66.10
Pinus strobus 39.19 89.62
Quercus velutina 34.6 47.46
Sassafras albidum 75.02 82.3
Ulmus alata 47.8 48.81
Ulmus americana 58.39 63.84
Ulmus rubra 23.68 35.05
Ostrya virginiana 79.05 105.93
Carya glabra 29.85 40.20
Populus tremuloides 144.48 231.34
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Table 3. (Continued )

Species name RMSPE for seedling
model including
basal area

RMSPE for seedling
model without basal
area

Prunus serotina 61.59 74.19
Carpinus caroliniana 71.06 87.62
Crataegus L. 19.14 22.03
Carya alba 43.58 62.88
Carya ovata 11.99 17.04
Acer negundo 16.97 23.93
Cercis canadensis 20.85 22.47
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