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In this Supplement we first show that traditional degree-day models do not contain information 
on timing of onset of spring development.  We then describe the continuous development model 
(CDM) and provide diagnostics. 

Appendix	  S1	  -‐-‐	  Thermal	  effects	  in	  the	  degree	  day	  model	  
Because degree-day models ignore the order of days, assumptions can be evaluated from a 
simple intensity function of daily temperatures q(T).  In other words, the number of days that fall 
within the temperature interval (T’,T’+Δ)  ≈ Δq(T’) , where Δ is a small time interval. Without 
loss of generality we can order daily temperatures from T’ through the temperature U that 
corresponds to the date of the observed phenological event, e.g., budbreak.  The number of 
intervening days from unknown T’ to observed U is  

Days !T ,U( ) = q T( )dT
!T

U

∫
 S1 

and the number of degree days is
 

DD !T ,U( ) = T − !T( )q T( )dT
!T

U

∫
 S2 

If we are to estimate the parameter T’ it must influence the calculation of degree days.  From eqn 
S2 increasing T' by an amount Δ has two effects.  First, days falling in the temperature interval 
T ∈ "T , "T + Δ( )  no longer contribute to degree days; they are now below the threshold.  Second, 
the threshold weights the contribution of each day in the integrand. The question is, which 
contribution has impact on the calculated degree days? 

Sensitivity to the threshold is given by the change in degree days that attends a change in 
threshold, a difference of integrals 
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The first term is Δ times the number of days above the new threshold (see eqn S1).  The second 
term contains only contributions from days in the narrow interval between T' and T' + Δ.  Noting 
that this second term approaches Δ2p(T’ + Δ)/2, eqn S3 gives sensitivity,
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=  -(days above threshold + days lost at onset)  S5  

=  chronic penalty + onset penalty 

Both penalties are now expressed in days.  
The chronic penalty (first term of S5) is 
overwhelming—for a degree increase in the 
threshold the calculated degree days declines 
by the number of days until budbreak.  In 
three years of temperature data from Duke 
Forest the chronic penalty accounts for > 96 % 
of the effect of a Δ = 3°C increase in the 
threshold. Yet the motivation for and 
interpretation of the threshold comes largely 
from its implications for timing of onset. 

The second term, the penalty for lost days at 
onset is incurred only for days having 
temperatures in the small interval between T' 
and T' + Δ, and the few days that do occur in 
this interval contribute near zero (because 
temperature is only slightly above the 
threshold). 

The small contribution of delayed onset means 
that we cannot identify when onset occurs, 
which is required in many models that attempt 
to estimate the relationship between chilling, 
then warming.  Although a number of studies 
report estimates based on observations of 
budbreak dates, such estimates should be 
viewed cautiously. 

 
Given the unrealistic assumption that the 
threshold imposes a chronic penalty, an 
alternative is to simply assume a reasonable 
value for T' as basis for the calculation of DD.  
A precise estimate of T’ is not required in the 
CDM, because it is not based on degree days 
and there is no assumption that T’ affects development after onset. 

 

Figure S1. The two terms of eqn S5 showing how the 
thermal model is dominated by the assumption of  a 
chronic penalty.  a) A 3°C increase in threshold T' 
loses only a few days early in the season (brown), but 
the chronic penalty persists (blue).  This loss is 
shown in the density in (b), less than 3% of the total 
penalty assumed in the thermal model.  Over 3 yr, 96 
to 97% of the penalty is chronic (c). 



Appendix	  S2	  -‐-‐	  The	  Continuous	  Development	  Model	  of	  phenology	  
The observed discrete state Siy,t ∈ 1,...,K{ }  is observed for individual i = 1,…, n at times t in year 
y. The K = 6 observed stages for our study, ranging from dormant to fully expanded leaves, are 
listed in Table 1.  The underlying true stage is also discrete siy,t ∈ 1,...,K{ } , but it is assumed to 
exist at all times, not just when the individual is observed.  There is multinomial observation 
error describing the probability that an individual is observed to be in stage Siy,t, when its true 
stage is siy,t, 

p Siy,t siy,t = k( ) ~ multinom 1,π k( )  S6 

 

where π k = π k1,...,π k6[ ]  is the vector of probabilities that an individual in state k is recorded as 
any of K states.  Observation error from eqn S6 allows for the fact that states are not precisely 
discrete, but are recorded as such.  The K × K matrix π is a concatenation of the six πk vectors, 
each of length K. 

 
The discrete stages siy,t arise as observable changes that result from development, which is 
unobserved and affected by the environment, genotype, and so forth.  This latent continuous 
developmental state hiy(t) is taken for discrete time as hiy,t, where t is the time index of the model. 
For a given state h there are K = 6 corresponding probabilities that the individual will be in each 
of the true states siy,t.  The developmental state hiy,t increases from 0 at onset to 100 at the time of 
bud break. The range of hiy,t is not important, because we are ultimately interested in how 
environmental variation affects the probability of change in observable states--we marginalize 
over hiy,t  to move from environment to probability of observable states. In other words, hiy,t is a 
device that allows for the fact that development is essentially continuous, responding 
instantaneously to the environment experienced by the individual, a vector of predictors xiy,t.  We 
use the model 

dhiy,t = exp xiy,tβ + εiy,t( ) 1− hiy,t hmax( )dt
εiy,t ~ N 0,σ 2( )

 S7 

where dt = 2 days.  This simple formulation is selected to have readily interpretable parameters 
and to capture the basic features of development toward a final state approached at asymptote 
hmax = 100.

  

We refer to eqn S7 as the process model with process variance σ2.  The form of eqn 
S7 means that incremental development is non-negative (it can approach zero, but not regress).  

Covariates that accelerate development when positive are associated with positive values in β, 
and vice versa.  Input variables occupy a design vector 

xiy,t = 1 Tiy,t Gi Tiy,t ×Gi CUiy
"
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where Tiy,t is the average temperature for day t experienced by individual i, Gi ∈ 0,1{ }  is a binary 
indicator for southern (0) vs northern (1) seed source, Tiy,t ×Gi  is the interaction, and CUiy are 
chilling units (eqn 2 of main text).  Soil moisture and vapor pressure deficit were monitored, but 



they do not explain spring phenology in our region, because soil moisture remains near field 
capacity throughout the time of spring development. 

 
The discrete stages siy,t comprise an ordinal scale that is linked probabilistically to hiy,t.  As hiy,t 
increases over time, individuals transition through the discrete states from siy,t = 1 when dormant 
through siy,t = 6 when leaves are fully expanded.  The connection between hiy,t and siy,t is 
established by a multinomial logit, 

siy,t ~ multinom 1,θiy,t( )  S9 

where θiy,t  the length-K vector of elements 

θiy,t ,k = Piy,t ,k − Piy,t , j
j=1

k−1

∑
 

Here θiy,t,k is the probability that individual i is in stage k, and Piy,t,k is the probability that it has 
not progressed beyond k by day t.  Probabilities are models ar logits, 
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Hiy,t ,k = ck0 + ck1hiy,t  

There is a K −1( ) × 2  matrix of coefficients of intercepts ck0 and slopes ck1 on the logit scale that 

determine the transitions between states.  The ordinal states imply ck0 < c(k+1)0 ,ck1 < c(k+1)1( ) .  In 
other words stage 2 must follow stage 1, and so forth. 
 
Prior distributions for the model are non-informative, with several exceptions.  First, the 
observation errors are informative with prior 

π k ~ Dirichlet rk( )  

to admit departures from observations when there are reversals in observed states, i.e., an 
observation at one time implies an earlier stage than a previous time, Siy,t' < Siy,t for t' < t.  All 
observational information enters through the Si,t, so it is important priors informative and 
centered on observations.  Organized as a matrix, the K = 6 prior vectors are: 

 
 

 
 

 
 

 



                                                     True state: 
                                       r1       r2       r3      r4       r5      r6  

Observed state: 
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3
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5
6
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10−4 10−4 10−4 0.1 nJ 0.1
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where J is the number of observation times.  In other words the diagonal is heavily weighted.   

The prior distribution on β is uniform.  
The prior distribution for the process variance 

σ 2 ~ IG n,2 n −1( )( )  

has mean value of 2, which is approximately the maximum change in hiy,t for a time increment 
dt. 
 
The prior distribution for the c parameters is informative for transitions from the first stage and 
into the last stage, but otherwise weak.  We specify the prior on breakpoints where the Pk = 0.5 
and slopes, which determine steepness of transitions.  The prior on breakpoints is flat over a 
specified interval 
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In other words, the transition from stage two to stage three will fall in the interval (20, 30).  The 
gradients at breakpoints k are largely determined by the slope parameters c1k.  Initial slopes ck1 
together with breakpoints are used to initialize the matrix of c coefficients, with intercepts 
determined by slopes and breakpoints, 
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i.e., the sum of class probabilities < k taken at the breakpoint k.  Initial breakpoints and slopes 
determine a prior c matrix 



c =

25 −2.00
41 −1.65
55 −1.30
64 −0.95
65 −0.74
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However, the prior is vague, with diagonal covariance matrix having 10 along the diagonal. 
Thus, the prior is truncated normal, with truncations on breakpoints rather than c's, maintaining 
the ordering required for ordinal data. 

Appendix	  S3	  -‐-‐	  Diagnostics	  of	  the	  fitted	  model	  
Predictive distributions of discrete states were compared with observations for all species 
analyzed.  The predicted discrete states for individuals agree with the observations for those 
individuals (Fig. 5 of main text).  These distributions are predicted from the estimated latent 
states h(t) (solid lines with dashed 95% CIs) marginalized over the full posterior.  These 
predictions for individuals verify that the model estimating latent states that concur with 
observations. The broad scatter results from the fact that we are predicting the full time series of 
states initialized from the beginning of the year.  Because errors accumulate we expect there to 
be scatter, particularly in the center of the sequence.  However, the 1 sd predictive intervals span 
the line of agreement.  Good predictive capacity for an entire season ahead is not a requirement 
for a useful fit, but provides one of the most rigorous ways to evaluate the model. 

 

Appendix	  S4	  -‐-‐	  From	  the	  development	  scale	  to	  discrete	  observations	  

Here we discuss two types of sensitivity, the effect of an input on i) the rate of development, 
taken to be the probability of transition to a particular stage k, and ii) the timing of the transition 
to stage k.  Sensitivity of development rate begins with the probability of being in at least stage k 
at time t, which changes at rate  

∂ 1− Pk( )
∂t

= −
∂Pk
∂h

dh
dt

 

The density of h for stage k is logistic, 

Qk h( ) = − ∂Pk
∂h

=
−c(k−1)1e
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 S11 

For a benchmark comparable across species, we evaluate eqn S11 at the value of h where Pk = ½,  

Qk h( )Pk =1/2 =
−c(k−1)1
4

 

The sensitivity to an input variable q (say, temperature) is expressed on this scale as a rate 
sensitivity, 
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=
−c(k−1)1
4

βq + xq #q βq #q#q{ }∑( ) dhdt  S12
 

where q’ is an input variable that interacts with q, and {q’} is the set of all interactions for  q, and 
dh/dt is approximated by dividing the right-hand side of eqn S12 by dt = 2 days. 
 

Appendix	  S5	  –From	  the	  development	  scale	  to	  event	  time	  

Degree-day models often use regression to relate timing of an event, such as budbreak, to 
temperature.  Note the inverse relationship between timing in degree-day models and 
development rate in our CDM.  For the model comparisons in Figure 7 of the main text, we 
transform estimates from our CDM from an effect on rate to an effect on timing.  

The rate of development is r = 1/h dh/dt, and the associated time scale (in days) is τ = 1/r.  
Because the model is non-linear we select benchmark values for comparison with the regression 
approach, the mean values for predictor variables and the midpoint of development, h = hm/2, 
where hm= 100 is full development.  The predicted effect of a variable x' (DD or CU in °C) on 
timing is ∂τ ∂ "x = − "β e−xβhm dt , where β is the vector of estimated parameters for corresponding 
covariates in vector x, and β' is the parameter associated with x', either warming °C or CU.  This 
is the advance in days represented by a one-degree increase in spring temperatures or a 1 unit 
increase in chilling. 
 

 


