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Abstract Predictions of above-ground biomass and the change in above-ground bio-
mass require attachment of uncertainty due the rangeof reported predictions for forests.
Because above-ground biomass is seldommeasured, there have been no opportunities
to obtain such uncertainty estimates. Standard methods involve applying an allometric
equation to each individual tree on sample plots and summing the individual values.
There is uncertainty in the allometry which leads to uncertainty in biomass at the tree
level. Due to interdependence between competing trees, the uncertainty at the plot
level that results from aggregating individual tree biomass in this way is expected to
overestimate variability. That is, the variance at the plot level should be less than the
sum of the individual variances. We offer a modeling strategy to learn about change
in biomass at the plot level and model cumulative uncertainty to accommodate this
dependence among neighboring trees. The plot-level variance is modeled using a para-
metric density-dependent asymptotic function. Plot-by-time covariate information is
introduced to explain the change in biomass. These features are incorporated into a
hierarchical model and inference is obtain within a Bayesian framework. We analyze
data for the eastern United States from the Forest Inventory and Analysis (FIA) Pro-
gram of the US Forest Service. This region contains roughly 25,000 FIA monitored

Handling Editor: Pierre Dutilleul.

B Erin M. Schliep
erin.schliep@duke.edu

1 Department of Statistical Sciences, Duke University, Durham, NC, USA

2 Nicholas School of the Environment, Duke University, Durham, NC, USA

3 Department of Global Ecology, Carnegie Institution for Science,
Stanford, CA, USA

4 Department of Biology, Stanford University, Stanford, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10651-015-0321-z&domain=pdf


24 Environ Ecol Stat (2016) 23:23–41

plots from which there are measurements of approximately 1 million trees spanning
more than 200 tree species. Due to the high species richness in the FIA data, we com-
bine species into plant functional types.We present predictions of biomass and change
in biomass for two plant functional types.

Keywords Allometric equations · Bayesian hierarchical model · Cumulative
uncertainty · Forest biomass

1 Introduction

Forests play an important role in the global carbon cycle (Pan et al. 2011). Given
the range of predictions reported for carbon sinks in forests, estimates of associated
uncertainty are critical. For eastern North America, predictions of the annual carbon
sink range from 0.21 to 0.25 petagrams of carbon per year (Pg C/yr) (Pan et al. 2011).
Unfortunately, there has been no way to assign statistical model-based uncertainty
to these predictions because biomass per unit area is not directly measured. Instead,
allometric equations are applied to the diameter (and sometimes height) of each tree
on a plot to obtain predictions of above-ground biomass at the tree level, resulting
in uncertainty in tree-level biomass. At the plot level, predictions of above-ground
biomass are obtained by summing the independent tree-level predictions of biomass.
Summing the tree-level variances to obtain variance in total biomass ignores the fact
that trees interact. That is, due to the interdependence and crowding between com-
peting trees, the sum of the variances will not equal the variance of the sum. One
approach to this problem is to model the cumulative variance as density-dependent.
The variance model should allow for dependence as a function of density in the form
of diminishing returns; the plot-level variance is something less than the sum of the
individual variances.

Understanding forest biomass change is essential for human society to cope with
global climate change (Barford et al. 2001; Schimel et al. 2001; Wright 2005; Susan
2007). This has led to substantial literature providingmodeling efforts for both biomass
and the change in biomass. For example, McMahon et al. (2010) model biomass using
theMonod functionwhich describes the increase in biomass of forests during recovery.
Their approach focuses on patterns of resource use and limitation and is a function of
stand age and the age at half-saturation. Vayreda et al. (2012) use principal component
analysis to model change in carbon, as well its components, growth rate and mortality
rate. This approach has the disadvantage of making interpretation of model parameters
difficult.

We offer a species-level modeling strategy to quantify forest biomass change that
accounts for density and species differences as they vary geographically. Forests are
made up of a mix of tree species with varying functional traits and growth patterns as
a response to light, moisture, and nutrients. In the eastern United States, forests have
experienced dramatic change due to human disturbance for centuries (MacCleery
1993). In the process of recovery, forests are changing their species compositions over
time, a process referred to in forest ecology as succession. Thus, biomass change of
eastern US forests depends heavily on successional status of species and management
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practices across geography. To accurately quantify forest biomass change, we take
into account species, environment, geography, shade tolerance, and seral stage.

Allometric equations are available for common tree species regionally and globally
[e.g., Jenkins et al. (2003)]. Uncertainty at the tree level has been investigated in
terms of measurement error, the specification in the allometric equation, the sampling
protocol of stems in a plot, and the representativeness of small plots for a forest
landscape (Chave et al. 2004, 2014). However, we are interested in above-ground
biomass, referred to as biomass hereafter, at the plot level. Therefore, our estimates of
uncertainty should also be at the plot level.

Our data come from the Forest Inventory and Analysis (FIA) Program of the US
Forest Service and include species, size, and health of trees, as well as tree growth,
mortality, and removal by harvest. We analyzed data obtained from the eastern United
States. This region contains roughly 25,000 FIA monitored plots from which there
are measurements of roughly 1 million trees spanning more than 200 tree species.
Between 1997 and 2011, each plot in the region is surveyed twice. Due to the high
species richness in the FIA data, we combine species into plant functional types (as
described below) and model at that level.

To illustrate the nature of diminishing returns in the uncertainty of biomass at
the plot level, we predict tree-level biomass for late successional hardwoods in the
FIA data across the eastern US using species-specific allometric equations and asso-
ciated errors. That is, for each late successional hardwood on the plot we predict
biomass using species-specific allometric equations and the tree’s diameter at breast-
height. Using the estimates of uncertainty in the allometric equations, we repeat this
for 10,000 iterations to obtain a distribution of predicted biomass for each tree. For
each plot, we sum the tree-level predictions to obtain a distribution of predicted plot-
level biomass. We compute standard deviations of these samples for each plot to
obtain estimates of uncertainty in plot-level biomass. Working with plots of size
0.067ha, Fig. 1 (left) shows boxplots of the standard deviation of plot-level bio-
mass binned according to plot density. Initially, uncertainty in plot-level biomass is
increasing as a function of the number of trees. When the plot has more than 20
trees, however, uncertainty saturates; additional trees do not add to the uncertainty

Fig. 1 Standard deviation (left) and coefficient of variation (right) of the distribution of predicted biomass
at the plot level as a function of the number of trees
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in plot-level biomass. Also shown in Fig. 1 (right) are boxplots of the coefficient
of variation (CV) by plot density, where CV is computed as the ratio of the stan-
dard deviation to the mean. CV decreases as a function of the number of trees
indicating, again, that the variance of biomass at the plot level reaches saturation.
Chave et al. (2014) report a similar decrease in CV with increasing plot density
for tropical and sub-tropical forests and woodland savannas. We argue that the CV
decreases with the number of trees and it results from dependence among individu-
als.

We are interested in predicting biomass with uncertainty at the plot level and,
therefore, we model at the plot level. Additionally, we want predictions of the change
in biomass at the plot level. As a result of the FIA data collection protocol, small trees
are measured only on a subset of a plot while larger trees are measured on the entire
plot. This means that some trees will not have been included in a previous sample. For
this reason, we model as separate responses plot-level biomass of saplings and trees.
Due to the sparse surveying of plots, we model plot-level biomass statically at each
survey time with change in biomass induced by differencing. Plot-by-time covariate
information is introduced, as well as plot-level covariates, to explain change. A benefit
of our model is that we have an explicit conditional distribution for the rate of change
of biomass given current biomass for each plot and plant functional type. We propose
a parametric functional specification for cumulative uncertainty at the plot level that
results from aggregating individual-level biomass to plot-level biomass. All of these
features are incorporated into a hierarchical model and we implement inference within
a Bayesian framework.

The plan of the paper is as follows. In Sect. 2 we describe the FIA data, how
and where they are collected and the species and plant functional types observed.
Allometric equations for computing individual-level biomass are described in Sect. 3.
We show how biomass is aggregated to the plot level where total biomass is defined
as the summation of sapling biomass and tree biomass. We define Δ-biomass as the
annual rate of change in total biomass. In Sect. 4, we outline the models for sapling
and tree biomass. In Sect. 5, we apply the model to two plant functional types, late
successional hardwoods and southern pines. The paper concludes with a summary and
suggestions for future work in Sect. 6.

2 The FIA data

FIA applies a nationally consistent sampling protocol using a quasi-systematic design
covering all ownerships across the United States resulting in national sample inten-
sity of one plot per 2428 ha (Bechtold and Patterson 2005). Within the eastern
US, the FIA surveys roughly 25,000 plots (Fig. 2, left). Data obtained for each
plot include forest type, site attributes, tree species, tree size, and overall tree con-
dition. We included only non-disturbed plots in this analysis. Between the years
1997 and 2011, each plot is surveyed twice and the time between surveys ranges
from 1 to 12 years (Fig. 2, right). The inventory includes 218 species of trees. Due
to the large number of different species and the rarity of some species across the
region, we group species into 11 plant functional types (PFTs) (Dietze and Moorcroft
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Fig. 2 Number of plots surveyed by the FIA across the eastern US (left) and years between FIA surveys
across plots (right)

Table 1 Summary of the 23,259 FIA plots by plant functional type

No. PFT Acronym No. of plots

1. Early successional hardwoods ESH 16,364

2. Evergreen hardwoods Evergreen 1502

3. Hydrics Hydric 1213

4. Late successional conifers LSC 7627

5. Late successional hardwoods LSH 17,306

6. Midsuccessional conifers MC 3951

7. Northern midsuccessional hardwoods NMH 16,055

8. Northern pines NP 3531

9. Southern midsuccessional hardwoods SMH 10,810

10. Southern pines SP 4664

11. Other 693

2011). The PFTs are listed in Table 1 along with the number of plots each PFT was
observed.

An FIA plot consists of four circular subplots arranged in the pattern shown in Fig.
3. The subplots each have a radius of 7.32m and the distance between the subplot
centroids is 35.58m. Measurements are taken of all trees within subplots where a
tree is classified as an individual with diameter greater than 12.7cm. All saplings,
referring to individuals with diameters less than or equal to 12.7cm, are measured
on the four microplots, each of which is a subset of a subplot. The radius of each
micro plot is 2.07m. The total microplot area is 53.85m2 and the total subplot area
is 673.34m2. Ecologically, the distance between plots in the FIA data is too large
to adopt spatial dependence between plots. Instead, we capture heterogeneity across
plots using random plot effects.
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Fig. 3 FIA sampling scheme for
subplots (grey) and microplots
(black) on an FIA plot

3 Individual and plot-level biomass

3.1 Allometric equations for individual biomass

Biomass for each individual is computed using an allometric regression equation that
converts diameter to above-ground biomass. The allometric equation proposed by
Jenkins et al. (2003) is

log(biomass) = β0 + β1log(dbh) (1)

where dbh is diameter at breast-height (cm) and biomass is measured in kilograms
(kg). The parameter values β0 and β1 are species-specific. There are numerous studies
on biomass equations for different species and regions [e.g., Jenkins et al. 2003;
Brown et al. 1999; Marklund 1988; Zianis et al. 2005]. With the exception of Chave
et al. (2004), Wutzler et al. (2008), and Stephenson et al. (2014), however, there is
much less in the literature about their uncertainty due the destructive sampling of
trees that is required. Chave et al. (2004) investigated the error associated with the
allometric equations in predicting biomass for tropical forests and reported the choice
of allometric equation contributed to error greater than 20% of the above-ground
biomass Stephenson et al. (2014) found that Eq. (1) has a tendency to overpredict
biomass for larger trees for nine species from the temperate western USA. Using
a similar biometric equation, Wutzler et al. (2008) found confidence intervals for
biomass to be narrowwhere the coefficient of variation (CV)was 0.12 for an individual
at an average stand.

3.2 Sapling and tree plot-level biomass

Using (1) we obtain predictions of biomass (kg) at the individual level for each plot at
two survey times. Let s be an indicator for survey where s = 1 for the first survey and
s = 2 for the second survey. Let Y k

i js denote the biomass (kg) of the j th individual
at plot i of PFT k at survey s. Due to the different sampling intensities within the
plot (i.e. subplot, microplot), we model total biomass in two components, (1) biomass
of saplings and (2) biomass of trees. Let dki js denote the diameter of the individual.
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Individuals with dki js ≤ 12.7cm are classified as saplings at survey s and those with

dki js > 12.7cm are classified as trees at survey s. For plot i and PFT k we define
sapling biomass for survey 1 as

bki1 =
∑

j

Y k
i j1 I[dki j1≤12.7]

and at survey 2 as
bki2 =

∑

j

Y k
i j2 I[dki j2≤12.7]

where bkis is in terms of kg per four microplots within the FIA plot for all i , s, and k.
We denote total biomass of trees at plot i of PFT k for survey 1 as

Bk
i1 =

∑

j

Y k
i j1 I[dki j1>12.7]

and at survey 2 as
Bk
i2 =

∑

j

Y k
i j2 I[dki j2>12.7]

where Bk
is is in terms of kg per four subplots within the FIA plot for all i , s, and k.

We consider bkis and Bk
is as “noisy” total sapling and tree biomass, respectively, due

to the error in the predictions of each Y k
i js resulting from the allometry. That is, total

sapling and tree biomass is derived; it is never observed. However, with interest in
understanding the behavior of total biomass, below, we model the b’s and B’s.

Figure 4 gives histograms of the number of late successional hardwoods (LSH)
classified as saplings (left) and trees (right) observed at each plot during the first
survey. Also in this figure are histograms of total sapling and total tree biomass across
plots for LSH.

Let T Bk
is denote total biomass at plot i and survey s of PFT k. Total biomass is the

summation of sapling and tree biomass computed as

T Bk
is = bkis

As
+ Bk

is

At
(2)

where As and At are the total area (ha) of the four microplots where all saplings are
observed and four subplots where all trees are observed, respectively. Therefore, T Bk

is
is in terms of kg per hectare (kg/ha). The rate of change in biomass, given in kg per
hectare per year (kg/ha/yr), referred to as Δ-biomass, for plot i and PFT k is

Δk
i = T Bk

i2 − T Bk
i1

ti2 − ti1
(3)

where ti2 − ti1 is the time between the two surveys for plot i . This assumes a constant
rate of change in biomass between ti1 and ti2 as opposed to what would result from
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Fig. 4 Histograms of the number of individuals (top) and total biomass (bottom) of saplings (left) and
trees (right) for LSH for survey 1. Total biomass is given in kg per four microplots (saplings) and subplots
(trees) on the FIA plots

rapid or slow onset disturbance. However, we are limited by having only two times
points;more complexmodeling for the rate of changewould require additional surveys.

4 The model

We define models for noisy total sapling and tree biomass in a hierarchical framework.
Noisy total sapling biomass, henceforth referred to as sapling biomass, is modeled as

bkis = nkisμ
k
is + g(nkis;φbk )ε

k
is (4)

where nkis is the number of saplings, μk
is is the average sapling biomass, and

g(nkis;φbk )ε
k
is is first-stage measurement error. We assume εkis is independent error

with variance σ 2
bk

for all i , s, and k, and g(nkis;φbk ) is a function of nkis and a para-
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meter φbk . Similarly, we model noisy total tree biomass, henceforth referred to as tree
biomass, as

Bk
is = Nk

isθ
k
is + g(Nk

is;φBk )η
k
is (5)

where Nk
is is the number of trees, θkis is the average tree biomass, and g(Nk

is;φBk )ηkis
is first-stage measurement error where ηkis is independent error with variance σ 2

Bk .

Again, g(Nk
is;φBk ) is a function of Nk

is and a parameter φBk .
We assume the function g(m;φ) is an exponential asymptote function with para-

meter φ that is bounded above where

g(m;φ) =
√
1 − exp−m/φ. (6)

This parametric functional form was motivated by Fig. 1 to govern cumulative uncer-
tainty at the plot level that results from aggregating from individual-level biomass
to plot-level biomass. It assumes that measurement error increases as the number of
individuals on the plot increases while restricting total plot-level measurement error.
Here, φbk denotes the range parameter controlling the asymptote of sapling biomass
measurement error and φBk denotes the range parameter controlling the asymptote of
tree biomass measurement error.

Next, we model average sapling and tree biomass as incorporated in (4) and (5). To
ensure that average biomass is non-negative, we model both μk

is and θkis using a tobit
model with latent random variables μ̃k

is and θ̃kis , respectively. That is,

μk
is =

{
μ̃k
is μ̃k

is > 0

0 μ̃k
is ≤ 0

(7)

and

θkis =
{

θ̃kis θ̃kis > 0

0 θ̃kis ≤ 0.
(8)

In general, the tobit model is a more natural model than say, a log-normal, if we expect
many average sapling or tree biomasses to be small, and thus, don’t think the left tail
of the density should go to 0 at 0.

Both latent average biomass variables are specified through a linear mixed model
with normally distributed error. For PFT k, latent average sapling biomass is

μ̃k
is = W ′

isα
k
1 + λki

λki = X ′
iα

k
2 + νki

(9)

where W is is a vector of survey year-specific covariates for plot i , αk
1 is a vector of

coefficients, and λki is a plot random effect. The plot random effect λki is centered
with mean X ′

iα
k
2 where X i is a vector of covariates for plot i and αk

2 is a vector of
coefficients. Lastly, νki is normally distributed random noise with mean 0 and variance
τ 2
λk
. The multilevel structure of the model is specified in the form of hierarchical
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centering1 which better identifies the model parameters and leads to better behaved
Markov chain Monte Carlo (MCMC) model fitting (Gelfand et al. 1995). Similarly,
latent average tree biomass is modeled as

θ̃kis = W ′
isβ

k
1 + γ k

i

γ k
i = X ′

iβ
k
2 + ζ k

i .
(10)

Here, βk
1 and βk

2 are vectors of coefficients, γ k
i is a plot random effect, and ζ k

i is
normally distributed random noise with mean zero and variance τ 2

γ k .

Given the model parameters, we have explicit distributions of both T Bk
i1 and T Bk

i2,
as well asΔk

i |T Bk
i1 using (2) and (3) (See “Appendix”). From (4) and (5), total biomass

might possibly be less than 0, in which case we set it to 0. Using these distributions
and composition sampling we are able to obtain draws from the posterior predictive
distributions at the plot level for total biomass and Δ-biomass.

We assign prior distributions to the model parameters defined in (4), (5), (9), and
(10) above as follows. At the data level, we assign diffuse, conjugate inverse-Gamma
distributions to the variance parameters, σ 2

bk
and σ 2

Bk . The range parameters, φbk and
φBk , controlling the exponential asymptote functions are assigned truncated-normal
distributions constrained to be positive. We assign mean zero multivariate normal
distributions to the coefficient vectors αk

1 and βk
1. These priors are not conjugate

because both true average sapling and tree biomass parameters, μk
is and θki t , are non-

negative as definedby the tobitmodel in (7) and (8). Thus, sampling of these parameters
requires Metropolis-Hastings steps and the details of these algorithms are given in
“Appendix”.

The coefficients α2 and β2 are assigned noninformative conjugate multivariate
normal distributions. We include plot-level random effects, νki and ζ k

i , to capture any
remaining heterogeneity in sapling and tree biomass across plots beyond that being
explained by the covariates. The random noise parameters νki and ζ k

i are assumed i.i.d.
normal random variables with mean 0 and variances τ kλ and τ kγ , respectively, where

τ kλ and τ kγ have conjugate inverse-Gamma distributions.

5 Application: Modeling biomass in the eastern US

We model biomass for two plant functional types: late successional hardwood (LSH)
and southern pine (SP). There are 17,306 plots that contain at least one LSH and 4664
plots that contain at least one SP. The plots are mixed stands such that other PFTs may
also be present. LSH are found throughout the majority of the eastern US while SP
are concentrated in the southeast. Again, each plot is surveyed twice according to the

1 Hierarchical centering is a reparameterization technique formodelswithmultiple levels of randomeffects.
It can be applied in its simplest form in the context of a standard ANOVA model where population means
are often expressed as a global mean and a population level deviation, e.g., μ + αi . Here, the data will
well-identify the sum but not as well the components. Hierarchical centering entails reparameterizing from
μ and αi [with prior π(μ)π(αi )] to ηi = μ + αi and μ and specifying the prior as π(ηi |μ)π(μ), i.e.,
centering the ηi hierarchically.
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sampling scheme outlined in Sect. 2. We use 80% of the plots of each plant functional
type to fit the model and hold out the remaining 20% to do out-of-sample prediction
for model evaluation.

As shown in Fig. 4, the average total biomass of LSH saplings per four microplots
is 36.6 kg and average total biomass of trees per four subplots is 2340 kg. The number
of LSH saplings observed on the four microplots ranges from 1 to 45 with a median
of 3. The number of LSH trees observed on the four subplots ranges from 1 to 64 with
a median of 6. For SP, the average total biomass of saplings is 27.5 kg and average
total biomass of trees is 2318 kg. The total number of SP saplings ranges from 1 to
126 with a median of 3 and the total number of SP trees ranges from 1 to 105 with a
median of 7 (Figures not included).

The survey year-specific covariates in each model include tree density and stand
age of the plot. Tree density is the total number of trees of all species observed in
the plot at the time of the survey. Other covariates in the model include temperature
and precipitation, both of which are centered and scaled, and indicator variables for
physiographic class code of availablemoisture in the soil. The three classes ofmoisture
availability are xeric, mesic, and hydric where xeric is low or deficient, mesic is
moderate and used as the base level, and hydric is abundant. These covariates are not
survey year-specific.

The prior distributions assigned to the parameters σ 2
bk

and φbk of the measure-
ment error variance of sapling biomass are inverse-gamma and truncated normal,
respectively, where σ 2

bk
∼ IG(3, 104) and φbk ∼ T N (0, 40, 0,∞). The tree bio-

mass measurement error parameters are assigned σ 2
Bk ∼ IG(3, 105) and φBk ∼

T N (0, 40, 0,∞). The priors for σ 2
bk

and σ 2
Bk

were both chosen to be diffuse. Since
tree biomass is larger than sapling biomass, we assume measurement error may also
be larger. Thus, the median of the distribution of σ 2

Bk is greater than the median of the

distribution of σ 2
bk
. The priors for φbk and φBk were chosen such that the distributions

spanned the observed nkis and Nk
is .

The coefficient vectors αk
1 and βk

1 have mean zero multivariate normal prior dis-
tributions with variance 106 I p1×p1 where p1 = 2. The coefficient vectors αk

2 and βk
2

each contain an intercept term and are assigned mean zero multivariate normal prior
distributions with variance 106 I p2×p2 where p2 = 5. Lastly, the variances τ 2

λk
and

τ 2
γ k are assigned IG(4, 4) prior distributions.
The model is fitted using R software (R Development Core Team 2007) running

on an Intel Core i7 processor with Scientific Linux 6.4. We use Markov chain Monte
Carlo (MCMC) to sample from the posterior distribution of the parameters given the
data. The MCMC algorithm was contrived specifically for this application and some
explicit details are included in 1. We run MCMC for 100,000 iterations. Convergence
was assessed by computing the Gelman and Rubin R statistic for each of the model
parameters using three chains with varying starting values. The upper 97.5% bound
on the statistic was less than 1.10 for each of the parameters, indicating no issues
with convergence. We disregard the first 50,000 samples as burn-in and retain every
10th iteration for inference. Posterior median estimates and 95% credible intervals
are given in Table 2.
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Table 2 The posterior medians and 95% credible intervals for parameters of average sapling and tree
biomass

Parameter Late successional hardwoods Southern pines

α11 (Tree density) 0.14 (0.12, 0.17) 0.23 (0.21, 0.24)

α12 (Stand age) 0.07 (0.06, 0.09) −0.05 (−0.07, −0.03)

α20 (Intercept) 6.28 (5.53, 7.00) 11.56 (10.78, 12.36)

α21 (Temperature) −1.58 (−1.99, −1.19) 0.56 (0.05, 1.11)

α22 (Precipitation) 0.31 (−0.08, 0.69) 0.05 (−0.40, 0.49)

α23 (Xeric) −1.12 (−2.03, −0.16) 2.13 (0.83, 3.41)

α24 (Hydric) 1.13 (−0.17, 2.48) 3.09 (0.39, 6.02)

β11 (Tree density) −3.30 (−3.51, −3.10) −0.29 (−0.38, −0.21)

β12 (Stand age) 3.36 (3.26, 3.46) 6.41 (6.19, 6.61)

β20 (Intercept) 158.6 (150.9, 168.5) −6.42 (−17.62, 5.67)

β21 (Temperature) −14.46 (−21.52, −7.83) 56.77 (47.96, 65.85)

β22 (Precipitation) −4.81 (−11.40, 1.71) −12.93 (−21.15, −4.75)

β23 (Xeric) −131.2 (−149.3, −112.0) −114.1 (−137.0, −91.62)

β24 (Hydric) −12.72 (−34.03, 8.81) −2.85 (−40.74, 36.02)

Bold indicates credible intervals not containing 0

The coefficient for tree density in average tree biomass is negative for both PFTs
indicating that plots with high tree density have lower average tree biomass. Interest-
ingly, however, the same coefficient for average sapling biomass is positive. This is
because plots with high tree density tend to have fewer saplings, resulting in larger
values of average sapling biomass. Both average sapling and tree biomass for LSH
are increasing between the first and second survey indicated by positive coefficients
for stand age. Average SP tree biomass is increasing between the first and second
survey but average sapling biomass for SP is decreasing. Average LSH sapling and
tree biomass decreases with temperature while SP sapling and tree biomass increases
with temperature. Additionally, high soil moisture tends to increase average sapling
biomass and both low and high soil moisture tend to decrease average tree biomass.

We compute estimates of the measurement error variance of sapling biomass and
tree biomass using posterior estimates of σ 2

bk
, φbk , σ 2

Bk , and φBk for LSH and SP.
We plot posterior median estimates and 95% credible intervals of the variance as a
function of the number of saplings and trees in Fig. 5. The histograms in each figure
are of the the number of saplings (top) and trees (bottom) for each of the PFTs. The

measurement error of sapling biomass is σ 2
bk

(1 − exp−nkis/φbk ) and the measurement

error of tree biomass is σ 2
Bk (1 − exp−Nk

is/φBk ). The measurement error variance for
both sapling and tree biomass for LSH asymptotes within the range of the number of
individuals per plot that we observed. Tree biomass reaches an upper bound for SP but
sapling biomass does not. This is likely due to the majority of the plots having fewer
than 30 saplings and two plots in the region being outliers with more than 60. Changes
in the range parameter φbk can inflate the variance which explains the large values of
posterior variability seen in the measurement error for sapling biomass of SP.
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Fig. 5 Posterior median estimates and 95% credible intervals (kg2) of measurement error variances for
sapling (top) and tree (bottom) biomass for late successional hardwoods (left) and southern pines (right) as
a function of the number of individuals. The histograms in each figure are of the number of individuals on
the plot

Table 3 In-sample RMSE for total sapling and tree biomass (kg) at surveys 1 and 2 for late successional
hardwoods and southern pines

Model b1 b2 B1 B2

Late successional hardwoods 15.66 15.07 266.02 266.73

Southern pines 24.72 23.46 240.02 236.19

In-sample root mean square error (RMSE) is reported in Table 3 for sapling and tree
biomass at each survey time for both PFTs. Samples from the posterior distribution
of bkis and Bk

is are obtained using posterior draws of the model parameters. The values
are similar for both survey times and functional type. We obtain posterior samples of
Δk

i using (2) and (3) and posterior draws of bkis and Bk
is .

Posterior median predictions of change in sapling and tree biomass per year are also
shown spatially for both LSH and SP in Fig. 6. We see that sapling biomass for LSH is
increasing in North Carolina, while changes in the rest of the eastern US are small. The
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Fig. 6 Posterior median predictions of the change in biomass (kg/ha/yr) of saplings (top) and trees (middle)
for late successional hardwoods (left) and southern pines (right). The bottom panel give posterior median
predictions of Δ-biomass (kg/ha/yr) for the two PFTs
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Fig. 7 Standard deviations of the posterior distributions of Δ-biomass (kg/h/yr) for late successional
hardwoods (left) and southern pines (right)

mild increases in tree biomass across the eastern US result from growth and is driving
the positive predictions of Δ-biomass in the bottom panel of the figure. Decreases in
sapling biomass through time for SP is predicted in much of the southern states except
for regions in North Carolina and Alabama. Nearly all plots are seeing increases in
tree biomass of SP, many of which are large in comparison to the growth of LSH. This
is, in part, due to the rapid growth rate of SP and their high tree density in the region.

Posterior median predictions of Δ-biomass (kg/ha/yr) are shown in the bottom
panel of Fig. 6 for both functional types. Biomass is increasing in the upper midwest
and northeast, as well as North Carolina for LSH. Biomass is increasing throughout
the entire southeast for SP. The predominant contributor to positive predictions of
Δ-biomass for SP is the increase in tree biomass, or growth. Decreases in biomass
appear to be very localized events as there are no regions reporting clusters of negative
Δ-biomass. Large decreases in biomass are often the result of the mortality of a large
tree. One of the benefits of our model is that we also obtain estimates of uncertainty
for Δ-biomass. Show in Fig. 7 is the standard deviation of our posterior distribution
of Δ-biomass across space for both PFTs.

We predict biomass at hold-out plots for both PFTs. Table 4 reports 90% empirical
coverage probabilities for total sapling and tree biomass for both survey times. Each
of the coverage probabilities is slightly greater than the nominal level indicating that
our prediction intervals for total sapling and tree biomass are conservative. We also
compute out-of-sample root mean square prediction errors (RMSPE) for the hold-out
plots (Table 5). RMSPE values are similar between the two survey times and PFTs.

6 Discussion

The interdependence between trees introduces challenges in estimating the uncertainty
of biomass at the plot level. Due to this dependence, the variance of plot-level biomass
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Table 4 Out-of-sample 90% empirical coverage probabilities

Model b1 b2 B1 B2

Late successional hardwoods 90.49 93.09 96.19 95.90

Southern pines 92.88 94.84 94.37 93.64

Table 5 RMSPE for total sapling and tree biomass (kg) at surveys 1 and 2 for late successional hardwoods
and southern pines

Model b1 b2 B1 B2

Late successional hardwoods 46.55 45.65 1753.36 1885.80

Southern pines 52.15 47.15 1877.32 2381.18

should be less than the sum of the variances of the individual trees. Therefore, we
propose a parametric density-dependent asymptotic functional form for the plot-level
variance of biomass as motivated by our illustration.

We model biomass for each plant functional type by first defining total biomass
as the summation of sapling and tree biomass. Sapling and tree biomass are mod-
eled in terms of the average biomass of an individual in each size class. Modeling in
terms of average biomass is advantageous due to the challenges of directly mea-
suring change in biomass. We model sapling and tree biomass separately due to
the unequal sampling intensities between saplings and trees. The model is defined
specifically for the sampling scheme of the FIA data in the eastern US and would
therefore need to be modified to accommodate other sampling schemes. Predictions
of the rate of change in biomass, Δ-biomass, are computed as the difference between
total biomass at the two surveys divided by the time between surveys. We applied
the model to two plant functional types, late successional hardwoods and southern
pines.

Ongoing work includes scaling biomass predictions at the plot level to larger spatial
regions. Both regional and global predictions of biomass are of interest tomanagement
as they assess the sustainability of biomass. Additionally, we plan to model more plant
functional types. In fact, if wemodel all the functional typeswewill be able to consider
the behavior of and change in total biomass across the region. The modeling challenge
then becomes to incorporate suitable dependence between PFT’s as we sum across
them in order to obtain appropriate estimates of uncertainty.

Further challenges include projecting biomass change under varying covariate sce-
narios to address the carbon cycling issue raised at the outset of the paper. Also, we
may be able to avail ourselves of additional data sources (e.g., National Ecological
ObservatoryNetwork (NEON) products) presenting the opportunity to implement data
fusion to enhance our understanding of the process.
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Appendix

Implicit distributions of total biomass and Δ-biomass

The model implies distributions relating to T Bk
i1, T Bk

i2 and Δk
i .

Let Θk
s = {μk

is, θ
k
is, σ

2
bk

, φbk , σ
2
Bk , φBk } for s = 1, 2. Then

(a) T Bk
i1|Θk

1 ∼ N
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σ 2
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)
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Additionally, T Bk
i2 and T Bk

i2 are conditionally independent given Θk
1 and Θk

2 .

Furthermore, since Δk
i = T Bk
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.

Therefore, given the model parameters, we have an explicit distribution for Δk
i |T Bk

i1.
These distributions can be used in conjunctionwith prior samples through composition
sampling to obtain samples from the posterior predictive distributions at the plot level
for total biomass and Δ-biomass.

MCMC algorithm

The tobit latent variable approach to modeling average sapling and tree biomass
requires Metropolis-Hastings algorithms for iterative sampling of αk

1, βk
1, λk , and

γ k . As a proposal distribution for each of these parameters, we use the full conditional
distribution of the parameter under the assumption that μk

is = μ̃k
is and θkis = θ̃kis (i.e.,

dropping the tobit models (7) and (8) for average sapling and tree biomass, respec-
tively). For simplicity, let p1 = 1. Dropping k for ease of notation, the full conditional
distribution of α1 is

p(α1|b1, b2,λ,β2, τ
2
λ , σ 2

b , φb) ∝ p(b1, b2|α1,λ, σ 2
b , φb)p(α1)

∝ p(b1|α1,λσ 2
b , φb)p(b2|α1,λ, σ 2

b , φb)p(α1).

Letting μk
is = μ̃k

is , this conditional distribution is normal with known mean and
variance. We propose a candidate value from this distribution, denoted α∗

1 . Letting αc
1

denote the current value of α1, we compute μ̃∗
is = W ′

isα
∗
1 + λi , μ̃c

is = W ′
isα

c
1 + λi ,
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(μis)
∗ = max(0, μ̃∗

is), and μc
is = max(0, μ̃c

is) for each plot i and survey s. The
candidate value is accepted with probability

min

{
p(b1|μ∗

1, σ
2
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2, σ
2
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}

which reduces to

min
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.

(11)
Note that when all values of the latent variable μ∗

is are greater than or equal to zero,
the candidate value will be accepted with probability 1. Similar proposal distributions
and algorithms are employed for β1, λ, and γ .
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