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Abstract.   Trait analysis aims to understand relationships between traits, species di-
versity, and the environment. Current methods could benefit from a model-based proba-
bilistic framework that accommodates covariance between traits and quantifies contributions 
from inherent trait syndromes, species interactions, and responses to the environment. I 
develop a model-based approach that separates these effects on trait diversity. Application 
to USDA Forest Inventory and Analysis (FIA) data in the eastern United States demon-
strates an apparent paradox, that the analysis of species better explains and predicts traits 
than does direct analysis of the traits themselves; trait data contain less, not more, infor-
mation than species on environmental responses. Whereas variation in some traits is dom-
inated by inherent syndromes (tendency for certain traits to be associated with others 
within an individual and species), others are strongly controlled by variation in species 
diversity. There is substantial variation in environmental control on trait patterns, between 
traits and regionally. In terms of environmental response traits do not aggregate into 
defined plant functional types, as would be desirable for models.

Key words:   climate effects; forests; generalized joint attribute modeling; joint species distribution; predic-
tive trait analysis; species diversity; trait hyper-volume.

Introduction

Can analysis of ecological traits explain the diversity 
of communities in ways that study of species cannot? If 
distributions of traits provide more direct information 
on function than do distributions of the species that 
possess them, they may clarify some mechanisms (Kraft 
et  al. 2008, Mokany et  al. 2008, Lamanna et  al. 2014) 
and simplify biodiversity in models to a few trait-defined 
plant functional types (PFTs) (Boulangeat et al. 2012). 
Alternatively, a small number of traits that are weakly 
linked to fitness may provide limited insight on com-
munity diversity (Bret-Harte et  al. 2008, Kraft et  al. 
2015). While studies increasingly strive to explain how 
species and traits are controlled by the environment 
(Swenson et al. 2012, Lamanna et al. 2014), we do not 
yet have model-based estimates even for basic quantities, 
such as how trait covariances depend on the environment. 
Studies find weak effects of environmental variables at 
best and lack estimates of uncertainty. Lack of uncer-
tainty estimates makes it hard to say how much variation 
is meaningful. Here I demonstrate that probabilistic 
models can provide an objective basis for evaluating the 
connections between species, traits, and the environment. 
Application to forest inventory data demonstrates how 
their influences vary geographically and strong and 
coherent effects of environment and species diversity.

Model-based analysis is developed here to quantify the 
variation in traits that comes from (1) trait syndromes, 
(2) the diversity of species that possess them, and (3) the 
environmental variation that affects both species and trait 
diversity. Ecological traits are attributes of organisms 
that vary within individuals, between individuals, and 
between species (Wright et al. 2004, 2007, Westoby and 
Wright 2006, Lavorel et  al. 2008, Albert et  al. 2010, 
Asplund and Wardle 2014, Mitchell and Bakker 2014, 
Stahl et al. 2014, Moran et al. 2016), but they are most 
often analyzed as attributes of locations (Fig.  1a). In 
other words, there is a trait value associated with a 
location on a map, but it is derived from values asso-
ciated with individuals of a species. Trait syndromes 
describe how trait variation is structured within and 
between species (Westoby et al. 2002). They are summa-
rized by means, variances, or distributions over indi-
viduals of a species, without reference to location. For 
example, species differences in nutrient requirements 
lead to covariance between individuals in foliar nitrogen 
and phosphorus (Reich et al. 1998, Reich and Oleksyn 
2004, Han et al. 2005). Species having low wood density 
may tend to grow rapidly or possess other structural 
attributes (Chave et al. 2009, Poorter et al. 2010). Some 
trait covariance could have a phylogenetic component 
(Rafferty and Ives 2013). The term species diversity is 
used here in the usual sense of both numbers of species 
(richness) and evenness (Pielou 1977). Increasing richness 
can increase trait diversity, as new species bring new trait 
values. However, for a given number of species, trait 
diversity decreases with decreasing evenness, as the 
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distribution of trait values is concentrated around those 
of the dominant species. Finally, some of that covariance 
is explained by environmental variation, through its 
effects on the species that possess both the traits that are 
measured in a study and also those that are not. Thus, 
trait syndromes reference individuals whereas the effects 
of species diversity and environmental on trait distribu-
tions reference locations.

The model-based approach provided here quantifies 
the joint distribution of species and traits data that are 
measured on different scales. The joint distribution is 
needed not only to identify effects of trait syndromes, 
species diversity, and environment, but also to accom-
modate the codependence between traits that is induced 
by the methods used to derive location-referenced trait 
values as community-weighted means (CWMs). An 
analysis of climate effects on traits entails a scale trans-
lation from measurements on individuals to locations. 
This transfer is often done using CWMs, the weights 
being species abundances for a location (Garnier et al. 
2004, Ackerly and Cornwell 2007, Díaz et al. 2007, Kraft 
et al. 2008, Lavorel et al. 2008, Swenson and Weiser 2010, 
Rainford and Blossey 2014, van Bodegom et  al. 2014, 
Wilfahrt et al. 2014). In RLQ analysis, a sample-by-traits 
CWM matrix is obtained as the product of a sample-by-
species matrix (L) and a species-by-trait matrix (Q′; 
Doledec et al. 1996, Legendre et al. 1997, Laliberté and 
Legendre 2010, Lebrija-Trejos et al. 2010, Roscher et al. 
2012, Dray et  al. 2014). The translation from envi-
ronment to traits involves a third matrix, R, the sample-
by-environment matrix. Sometimes trait values are 
assigned to locations based on whether or not a species 
might occur there (Lamanna et  al. 2014); in this case, 
weights are zeros and ones. Such location-referenced trait 
values are analyzed in a variety of ways; for simplicity, 
I refer to CWM analysis, recognizing that CWMs are not 
the basis for all trait studies, but nonetheless are the 
subject of a large literature. In each of these cases trans-
lating traits from individual measurements to locations 
induces covariance between CWM values, because values 
for multiple traits are obtained from the same species 
data, the same weights.

Joint analysis is complicated by the fact that trait and 
species data come in many forms. Just as species abun-
dance data may be continuous (basal area, density, 
biomass), discrete (number of individuals), composition 
(relative abundance), or presence–absence (Clark 2016), 
trait data can likewise involve different data types. 
Continuous traits can include specific leaf area (SLA), 
wood density, leaf chemistry, and maximum tree height. 
Leaf habit is a categorical trait. Examples include 
broadleaf deciduous, broadleaf evergreen, and needleleaf 
evergreen (Fig. 1). When categorical traits are converted 
into CWM values, they become composition data—the 
continuous categories sum to 1 (Aitchison 1986,  
Leininger et al. 2013). Other variables are ordinal, lacking 
an absolute scale, such as shade tolerance (Baker 1949, 
Russell et al. 2014). Ordinal variables cannot be analyzed 

as quantitative data unless the scale itself is modeled as 
part of the analysis (Lawrence et al. 2008, Schick et al. 
2013).

In the absence of probability-based models to syn-
thesize the joint distribution of many data types inter-
pretations have relied on randomized versions of data 
and descriptive methods. Creative approaches include 
correlation, cluster analysis, ordination, machine-
learning algorithms, and other exploratory techniques 
(Garnier et al. 2004, Wright et al. 2007, Chave et al. 2009, 
Albert et al. 2010, Kleyer et al. 2012, Swenson et al. 2012, 
Stahl et al. 2013, Russell et al. 2014). RLQ analysis has 
the appeal of incorporating multiple traits. However, 
these methods do not yield probability statements. There 
are some model-based analyses of CWM values, but they 
lack a joint distribution. Generalized linear models fitted 
for each trait independently or for traits as predictors of 
species presence/absence (Webb et al. 2010, Pollock et al. 
2012, Jamil et al. 2013, Zhu et al. 2014) miss probabilistic 
relationships between traits. Current models do not 
accommodate the fact that CWM variation between 
samples (Fig. 1a) can be subtle relative to the large dis-
persion within samples (Fig. 1b). A joint distribution is 
needed that accommodates not only variation in traits, 
but covariance between traits, within a model framework.

This paper provides model-based trait inference and 
probabilistic prediction, which quantifies dependence in 
trait syndromes, species diversity, and environment and 
provides a basis for evaluating hypotheses (Ackerly and 
Cornwell 2007, Kraft et al. 2008, 2015, Lamanna et al. 
2014). Inference refers to fitting a model to estimate 
parameters with uncertainty. Predictive distributions are 
used to evaluate the model in- and out-of-sample and to 
evaluate its implications outside where data are observed. 
The uncertainty that can be estimated for parameters and 
predictions is important for hypothesis testing, e.g., by 
comparing fits for models that describe different relation-
ships. I begin by summarizing unique aspects of trait 
analysis that benefit from a joint analysis. Current CWM 
analyses often involve comparisons with environmental 
gradients or species diversity. I show why more insight 
is available from analyses of species, followed by trait 
prediction. The example application to eastern U.S. 
forests quantifies the contributions of environment to 
trait and species diversity. It demonstrates that the dis-
tributions of species are more sensitive to the environment 
than are the distributions of traits and shows how trait 
data can be effectively interpreted.

Trait Data and Models

The paradoxical conclusion that CWM analysis can 
be most informative when it begins with species rather 
than traits results from how stochasticity is treated in a 
trait model. A CWM analysis obtains trait values for a 
location by weighting species traits by the relative abun-
dance of each species. Consider a single trait value tms, 
for trait m = 1,…, M measured on each of s = 1,…, S 
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Fig.  1.  (a) Trait norms (TN; Eq. S2) and (b) ratio of the square-root of trait codispersion (WTC; Eq. S5) divided by TN,  
a coefficient of variation. In (b), contours are from thin to fat, 0.1, 1, 10. SLA, specific leaf area.
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species. Together these trait values are organized as an 
M × S matrix T of trait syndromes by species. Each trait 
occupies one row of T, a length-S vector tm. Weights are 
contained in the length-S vector wi at locations i = 1,…, 
n. Weights can be relative abundances of each species. 
The CWM value for trait m at location i is

� (1)

The weight represented by the abundance of each 
species affects the CWM values for all traits and thus 
induces co-dispersion. The trait values obtained in this 
manner can be modeled jointly. However, the stochas-
ticity in traits does not come from the trait data, 
suggesting an alternative approach.

What’s random, and why it matters

The stochasticity in CWM analysis does not come 
from traits. This is important because probabilistic 
models treat observations as random and independent. 
A standard weighted mean is obtained by weighting 
random observations unevenly, with the sum-to-one con-
straint on weights. The weights are taken to be fixed, and 
the sample is random. In CWM analysis, the opposite is 
true—species abundances are random, and the trait 
values in matrix T are taken as fixed—the same matrix 
T is applied to all sample locations. The CWM not only 
translates traits from individuals of a species to locations. 
It also changes the covariance structure of data. I first 
discuss why the change in reference affects the trait 
analysis, followed by the effect of CWM on model 
covariance.

To estimate the effect of environment ei on species si 
and trait mi requires that all three variables be referenced 
by location i. To predict species and traits from envi-
ronment, we need the conditional distribution

For example, to understand the effect of temperature 
or moisture (e) on a foliar chemistry trait (m), we could 
obtain a random sample of leaves recovered from litter 
traps, referenced by the location of the trap. The trait value 
could be recorded for each leaf. A model of 

[
si,mi|ei

]
 

could relate the trait values directly to the environment at 
each location.

A reference problem arises because trait values are 
rarely obtained this way. Individuals are sampled, not 
leaves, are selected for sampling. Let (i) be the index for 
an individual selected for sampling at location (i). 
Individuals on the basis of all three variables, a condi-
tional distribution

and leaves are measured on the sampled individual. 
Species and traits affect which individuals are sampled 
when studies focus on particular species groups, life 

forms, and so on. Environment affects sampling because 
it affects which species and trait values are common, and 
the environments included in a study are typically taken 
as part of the study design. The species-trait model is 
now problematic because traits and species depend on 
which individuals are in the data, related by conditional 
distributions,

In the special case where individuals are selected at 
random and all individuals contribute to trait values in 
the same way, then the distribution is simplified to some-
thing more like the litter trap example. Consider ran-
domly located plots, each containing ni individuals. Then 
if individuals are selected at random, and each individual 
has a probabiliity 1/ni of being selected, and the proba-
bility does not depend on other variables.

In this case we have the proper conditional distri-
bution, which, like the leaf example, does not depend on 
individuals

� (2)

Usually we do not have this distribution, due to two 
problems: (A) individuals are not selected at random and 
(B) each individual contributes to the mean trait value 
at a location differently. Problem A means we cannot 
ignore the design. Problem B means that individual meas-
urements require some form of weighting.

Trait reference and non-ignorable design

Ignorable design is an important concept for trait 
analysis, because trait values depend on climate and 
species (that’s usually the point), and these variables 
have biased representation in literature compilations. 
In the foregoing example of foliar chemistry, a model 
for trait response to soil fertility could come from litter 
traps deployed along a gradient. The model can ignore 
sampling design if the response is effectively the same 
as would have been obtained if sampling had been 
done at different locations along the gradient. Likewise, 
sampling leaves at random from litter traps allows us 
to ignore individuals and species, due to the manner 
in which samples are obtained. A model of envi-
ronment effects on traits could take the measured trait 
values on leaves and scale them by the total weight of 
the sample to obtain location-referenced trait values. 
Again, the sample need not be referenced to an indi-
vidual or even a species. However, design cannot be 
ignored if samples are concentrated in part of the gra-
dient, on specific species, or specific individuals, 
because sample distribution determines parameter 
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estimates. Problems compound if the studies used to 
compile trait data target specific species, which is 
almost always the case.

Individuals are not identical

Even where individuals are sampled at random, a 
model of environment effects on traits requires a means 
for scaling the sampled leaves to obtain their contri-
bution to total leaves at the location. This scaling requires 
that individuals can be weighted in terms of the 
number (or mass) of leaves they hold. Ideally, the weights 
approximate the contribution of each individual to the 
location-referenced trait. Whereas wood density might 
be scaled by its biomass of the individual, seed mass 
might be scaled by fecundity, including zeros for non-
reproductive individuals. The species-specific weights 
(e.g., allometric coefficients) introduce covariance 
between traits that does not exist in the true values. The 
CWM values have induced covariance that results from 
use of the same species weights for multiple traits.

Eq. 1 is a deterministic transformation of random species 
abundance by a fixed trait matrix T. Rather than a weighted 
mean, the CWM is more accurately described as a variable 
change, a standard term for variables (traits) that inherit the 
distribution of other variables (species abundances) as a 
simple functional relationship. CWM trait values do not 
have means and variances in the usual sense (they result 
from a variable change), but they can be described by norms 
and dispersion (Appendix S1). In this paper, trait syndromes 
are described by the trait norm (TN) and trait co-dispersion 
(TC; Table 1). I use the terms “mean” and “variance” when 
discussing variables that could be random in a model. 
CWM analysis weights the trait norm by species abundance 

in a sample, termed the weighted trait norm (WTN) and 
weighted trait co-dispersion (WTC). The concepts of TN 
and TC are valuable as baselines for considering species and 
environment effects.

Recognizing that stochasticity in CWM traits ema-
nates from weights suggests both limitations and oppor-
tunities. Limitations include the fact that, independent 
of species, traits obtained as CWM values do not have 
distributions. Trait values for a location reflect species 
turnover in space and, unless design can be ignored, 
species selection by ecologists. Maps like Fig. 1 are maps 
of species, not traits. So “trait modeling” can be viewed 
as “weight modeling”; the variation in traits is induced 
by weights. The realization that trait models are ulti-
mately weight models suggests the opportunity. If non-
ignorable design and weighting can be addressed, then 
the translation from individuals to locations in Eq. 1 can 
happen before or after analysis. Our analysis addresses 
the design challenges with use of a uniform sample grid 
over the sub-continent. Use of CWM values, based on 
biomass of each individual, shifts reference from plants 
to locations. Variation within species is not included in 
this analysis, due to availability of data. However, con-
structing a model for traits and species given environment 
with intraspecific variation has to confront these same 
issues (see Discussion). By fully evaluating both 
approaches, I show the paradox: we can learn more 
about traits from the indirect model of species than from 
the direct model of CWM traits themselves. I use the 
term trait response model (TRM) for the model where 
translation comes first. I use the term predictive trait 
model (PTM) for the model where translation comes last. 
Before describing each, I summarize the design consid-
erations for trait analysis.

Table 1.  Variables and sources of  dispersion and variance in trait formulas, including model-based inference. 

Source Eq. Size Description Uncertainty

Samples and transformations

  Trait observation (ti) 1 M × 1 trait vector at location i data (if replicate 
measurements)

  Relative species abundance (wi) 1 S × 1 species vector at location i data (if replicate plots)
  Trait matrix (T) 7, 8, S2 M × S traits by species matrix fixed
  Predictors (xi) 3, 6 Q × 1 design vector at location i fixed

Inherent trait syndromes

  Trait norm (TN) S2 M × 1 average over species no
  Trait co-dispersion (TC) S4 M × M average squared distance from TN no
Sample weighted traits
  Weighted trait norm (WTN) or 

community weighted mean
S3 M × 1 weighted by a species sample no

  Weighted trait co-dispersion (WTC) S5 M × M average squared distance from WTN no

Model-based estimates

  Predictive covariance (PTC) S8 M × M covariance from inherent 
syndromes, species diversity, and 
environment

data, model, 
parameters

  Environmental trait covariance (ETC) 
and species covariance (ESC)

S9 M × M covariance explained by 
environmental predictors

data, model, 
parameters

Note: Dimensions are given for Q predictors, M traits, and S species.



1984� Ecology, Vol. 97, No. 8﻿JAMES S. CLARK

Model-based inference and prediction

Both the trait response model (TRM) and the pre-
dictive trait model (PTM) described here begin with 
species composition data and lead to model-based esti-
mates (TRM) or predictions (PTM) of covariances for 
the joint distribution of traits. The length-S vector wi in 
Eq. 1 contains relative species abundances in observation 
i. The TRM translates S species to a length-M vector of 
traits, ui = Twi first and then models traits as a combi-
nation of discrete and continuous data types. The PTM 
models species weights as composition data and then 
predicts traits. The generalized joint attribution model 
(gjam) was used for both TRM and PTM. gjam accom-
modates combinations of continuous, categorical, com-
position, and ordinal data on the observation scales 
(Clark 2016; Appendix S1).

In TRM, traits are response variables. Seed mass, 
wood density, maximum height, foliar chemistry, and 
specific leaf area (SLA) are continuous variables. In this 
analysis, they are centered and standardized. Dioecy and 
ring-porous xylem anatomy are categorical variables, 
both with two classes. Leaf habit has three classes 
(broadleaf deciduous, needleleaf evergreen, broadleaf 
evergreen). Categorical traits become composition data 
when transformed by weights, fractions that sum to one. 
Ordinal traits include shade, drought, and flood tol-
erance scores, based on five classes (Niinemets and 
Valladares 2006, Stahl et al. 2013, Russell et al. 2014). 
Although modeled as continuous variables in previous 
trait analyses, ordinal traits cannot be averaged or 
modeled with regression, because they have no scale—the 
difference between a score of 1 and 2 (e.g., “very intol-
erant” and “intolerant”) does not equal the difference 
between 2 and 3 (e.g., “intolerant” and “intermediate”). 
We use the original five categories for shade-, flood-, and 
drought-tolerance (Baker 1949, Russell et al. 2014) and 
model them in gjam as ordinal data (Appendix S1). 
Because CWMs cannot be used for ordinal data each 
plot is assigned the modal tolerance score obtained using 
the CWM values as weights on each tolerance class. 
These are “community-weighted modes.”

Joint modeling of combined data types is detailed in 
Clark et al. (2016, in review). The first stage model is a 
multivariate normal distribution. The vector of traits at 
location i is

� (3)

where α is a Q × M matrix of coefficients, xi is the length 
Q vector of predictors, and Ω is an M × M trait covariance 
matrix. Continuous values in vector ui are the trait values 
themselves (continuous traits) or they determine the 
values for discrete traits vim defined by a partition pm,k for 
the kth level of trait m

� (4)

� (5)

Whereas TRM translates weights to traits first and 
then models traits, PTM models weights first, translates 
to traits second, and predicts traits third. Eq. 3 becomes

where β is a Q × S matrix of coefficients, and Σ is an S × S 
species covariance matrix. Continuous values in vector wi 
are the relative species weights. Once the species model is 
fitted, the translation to traits is a variable change

� (7)

� (8)

Thus, the model is fitted to species weights then trans-
formed to traits.

The third step involves trait prediction, which quantifies 
the contribution of species diversity to trait diversity 
(Appendix S1). Trait prediction provides a model-based 
version of WTC in Eq. 5. From this we derive the predictive 
trait covariance (PTC) and the environmental trait covar-
iance (ETC), which can be expressed as a fraction of the total 
model-based variance, the relative ETC, or RETC. Likewise 
the relative environmental species covariance is RESC.

Species and environment contributions to trait diversity

The framework laid out here includes the inherent trait 
syndromes (TC), the effects contributed by species dis-
tribution and abundance (PTC), and the effects of envi-
ronment that operates through its impact on species 
distribution (ETC; Table  1). Importantly, all of these 
contributions are on the same scale as the trait data; we 
can interpret effects of environment x and trait corre-
lation Ω on the same scale as the traits themselves.

The most important distinction between traditional  
CWM analysis and both of the methods used here is the 
model. Weighted trait codispersion (WTC; Eq. S5) 
describes codispersion in traits induced by empirical species 
abundances (W). By contrast, the model-based PTC (Eq. 
S8) describes trait diversity in terms of species responses to 
environment with full posterior inference available for β 
and Σ, which can be decomposed into species and envi-
ronment effects. The effect of environmental variable q on 
trait m is

i.e., the sum of the effects of each species. The effect of 
species s is isolated as pmsq = tmsβsq. The ability to isolate 
how each species contributes can be an advantage of PTM.

Evaluating the effect of a predictor taken over all species 
and traits requires too many coefficients and no way to 
combine them. Inverse prediction (Clark et al. 2012, 2013) 
provides sensitivity of all traits to a predictor in x. The 
number of sensitivity coefficients for a multivariate response 
can be large, e.g., S × Q coefficients for species or M × Q 
coefficients for traits. They cannot be added together or 
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averaged. By inverting the model, inverse prediction reduces 
sensitivity analysis to Q coefficients, each describing how the 
full ensemble of traits and species responds to a predictor. I 
use Brynjarsdottir and Gelfand’s (2015) index, the variance 
term in Clark et al.’s (2013) sensitivity index, for the TRM

and the PTM

I predict sensitivity s in eqns 9a, b from both models. 
In the application that follows, I demonstrate their rela-
tionships to one another.

The model-based analysis quantifies how species 
diversity and environment affect the covariance in traits. 
Trait syndromes for the species present at a local site or 
within a region occupy a cloud in trait space (Hutchinson 
1957, Mouillot et al. 2005, Lamanna et al. 2014). That 
cloud has hyper-volume V(TC), where TC is the trait 
covariance for species that occur in the region. (Appendix 
S1). The volume of that cloud is increased by species 
richness and by species evenness. Conversely, species 
dominance reduces trait diversity. This reduction in trait 
volume can result from “filtering” of species possessing 
certain trait values (Dias et  al. 1998, Cornwell and 
Ackerly 2009). The hyper-volume of traits that includes 
effects of species diversity is V(WTC) (empirical weights) 
or V(PTC) (model-based estimate). Finally, the volume 
that is explained by the environmental inputs is V(ETC).

Simple indices summarize the effects on trait diversity 
on the trait cloud V(). Inherent trait diversity occupies a 
hyper-volume on a per-species basis,

The maximum hyper-volume obtains at maximum 
entropy, all species equally abundant. This covariance is 
TC. Species diversity reduces the inherent diversity from 
potential TC to actual WTC. The reduction is greatest 
when this index is large

The effect of the environment is large when it repre-
sents a large fraction of the inherent trait diversity:

Methods

I illustrate using data from the USDA Forest Inventory 
and Analysis (FIA) program, climate from PRISM (data 
available online),4 and trait data, described in the 

Appendix S1. The trait response model (TRM, Eq.  3) 
and the predictive trait model (PTM, Eq. 6) were both 
fitted to the data using generalized joint attribute mod-
eling (gjam in R, Appendix S1). For this illustration, I 
include main effects from variables in Table S1, including 
interactions between moisture and soil type, a multilevel 
factor (four levels). Five percent of data were reserved 
for out-of-sample prediction. Diagnostics are presented 
with results in the next section.

Results

The two methods differ in their sensitivity to environ-
mental variables and predictive capacity. Both models 
predict most traits well, those for the predictive trait 
model (PTM) shown in Fig.  2. Predictions are least 
accurate at extremes, where there are few data. Poorest 
predictions are for ordinal tolerance classes (Fig. 2g–i). 
The model includes local and regional site factors that 
might be expected to predict these variables, including 
stand age for shade tolerance, deficit for drought tol-
erance, and moisture for flood tolerance. Of the compo-
sitional trait leaf types, the rare broadleaf evergreen type 
is poorly predicted (Fig. 2k).

Mean trait predictions are similar for the two models, 
with prediction errors being smaller for the PTM 
(Fig. 3a). The PTM finds larger sensitivity to predictors 
(Fig. 3b) and lower inverse prediction error for inputs in 
the model X (Fig. 3c). The difference is so wide for soil 
types that they could not be represented on the same scale 
with other inputs in Fig.  3c. If a predictor variable 
accounts for much of the observed response then inverse 
predictions will be concentrated near the 1:1 line in 
Fig. 4, as is the case for PTM (orange). Wide predictive 
intervals indicate low sensitivity for TRM (blue in Fig. 4). 
The full community of species provides especially 
accurate predictions of soil type, whereas traits do not 
(Fig.  4h–k). Despite differences in sensitivity, models 
agree that, taken across all species, winter temperature, 
slope, and soils are covariates having the most influence 
on traits in this analysis (Fig. 3b) and are best predicted 
by the community of species and traits (Fig. 3c).

Posterior distributions for trait responses to predictors 
are well identified, with narrow 95% credible intervals 
(Fig. 5). Although ordinal tolerance classes are not well 
predicted by the model, they are most sensitive to a 
number of predictors, probably due in part to definitions: 
the ordinal classes are partly defined by their tendency 
to covary with input variables analyzed here (Niinemets 
and Valladares 2006). Of all traits, drought tolerance 
shows the strongest positive response to winter temper-
ature (Fig.  5a) and climatic deficit (Fig.  5e) and the 
strongest negative response to moisture (Fig.  5d) and 
entisol/vertisol soils (Fig. 5i). Flood tolerance shows the 
strongest positive response to moisture (Fig. 5d), mollisol 
(Fig.  5h) and entisol/vertisol soils (Fig.  5i) and the 
strongest negative response to slope (Fig. 5b) and ultisol-
udults-kanhapludults soils (Fig.  5f). Shade tolerance 
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Fig. 2.  Data prediction for the predictive trait model (PTM). Box and whisker plots are in-sample predictions for the USFS Forest 
Inventory and Analysis (FIA) data set. Boxes are 68% and whiskers are 95% predictive intervals. Units are centered and standardized 
values for mass (a), density (b), height (c), concentration (d, e), area/mass (f), ordinal tolerance classes (g, h, i), and fraction (j–n).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

(m) (n)

(k) (l)

Fig.  3.  PTM (predictive trait model) and TRM (trait response model) provide similar mean predictions of 14 community 
weighted mean traits (a). Prediction errors (lengths of 95% intervals in (a) and inverse prediction errors (orange vs. blue in (c), note 
log scale) for inputs are substantially lower for PTM than TRM. Sensitivity to inputs (Eq. 9) is larger for PTM (b). In (b) and (c), 
boxes are 68% and lines are 95% of the root mean square prediction errors (RMSPE). The median estimate is also shown. Units 
differ for each trait in (a) (see Fig. 2).  Sensitivity in (b) is dimensionless.  Prediction errors are for centered and standardized 
variables, with the exception of soil variables, which are factors (zeros and ones): UltKan (Ultisols-Udults-Kanhapludults), 
SpodHist (Spodosols, Histosols), Mol (Mollisols), and EntVert (Entisols, Vertisols).
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Fig. 4.  Inverse predicted inputs in X compared from the PTM and TRM. Boxes are 68% and lines are 95% prediction intervals. 
Units for each predictor are given in the caption to Fig. 3, including full names of soil factors).

Inputs in X

−1 0 1 2

−3
−2

−1
0

1
2

3

0.0 0.2 0.4 0.6 0.8

−0
.5

0.
0

0.
5

1.
0

−1.0 −0.5 0.0 0.5 1.0

−1
0

−5
0

5

−0.5 0.0 0.5 1.0

−1
5

−5
0

5
10

−2 −1 0 1 2 3 4

−5
0

5

−2 −1 0 1 2

−4
−2

0
2

4

−2 −1 0 1 2 3

−6
−4

−2
0

2
4

6

PTM
TRM

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Winter temperature (b) Slope (c) Aspect 1 (d) Aspect 2

(e) Stand age (f) Moisture (g) Deficit

(h) UltKan (i) SpodHist (j) Mol (k) EntVert
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shows the strongest positive response to stand age 
(Fig.  5c) and spodisol-histisol soils (Fig.  5g) and the 
strongest negative response to climatic deficit (Fig. 5e). 
In each of these cases at least some of these predictors 
are used to assign ordinal classes to species, which affects, 
in turn, the plot CWM value.

The model-based analysis provides estimates and 
uncertainty for trait variables measured in diverse ways 
on a common scale, allowing comparisons. The strongest 
effects on foliar chemistry come from temperature, a 
negative effect on leaf (N) and leaf [P] (Fig. 5a) and mol-
lisol soils, a positive effect (Fig. 5h). However, the overall 
responses of these foliar traits differ substantially. The 
environmental trait covariance (ETC) shows that leaf [N] 
responds like SLA, whereas leaf (P) responds most like 

dioecy (Fig. 6). Xylem anatomy, wood density, and seed 
mass are most similar based on their responses to the 
environment (Fig. 6). Based on responses to all environ-
mental variables there are three distinct clusters of traits 
shown at the top of Fig. 6.

If traits capture the responses of species to environ-
mental predictors, then trait groupings provide a natural 
classification of plant functional types (PFTs). Fig.  6 
shows a clustering based on distance using responses to 
the same environmental variables, RESC for species (left) 
and RETC for traits (top), i.e., the responses of species 
and traits to the environment. The clustering of species 
based on their responses to the environment is consistent 
with major forest types in the eastern United States. The 
clustering of traits is based on the same criteria. If PFTs 

Fig. 6.  Cluster analysis of species (left) and traits (top) based on the relative environmental trait covariance (RETC,). The table 
at right shows trait values centered on mean values, with clustering at the top. The main clusters in species and traits are outlined 
with dashed lines on the grid. Color scale is in units of standard deviations for each trait.  Custer distance has units of Dij = ETCii + 
ETCjj - 2ETCij.
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can summarize responses of species, we expect well-
defined blocks of trait–species combinations in Fig.  6. 
Although there are a few weak patterns (high average 
wood density and seed mass in southern forests), results 
do not provide a summary set of PFTs based on traits 
that could stand in for species groups.

The importance of modeling ordinal variables properly 
is demonstrated by the partition estimates for the five 
classes in Fig.  7. There are four values separating five 
ordinal classes for each variable. The first partition is 
fixed at a value of 1, separating the first and second 
classes, but estimates for the other classes are part of the 
posterior distribution (Clark 2016). The highly nonlinear 
relationship, with negligible separation for the highest 
shade- and flood-tolerance classes, comes from two 
aspects of the data: (1) few plots are assigned to these 
highest categories, because the modal tolerance class for 
a plot is rarely the most tolerance class, and (2) the eco-
logical separation between high-tolerance classes is 
weaker than for low-tolerance classes. The ordinal 
classes cannot be analyzed as an absolute scale, because 
they are assigned on a qualitative basis. With proper 
inference, they show strong responses to the environment 
(Fig. 5).

The model-based approach provides a probabilistic 
basis for evaluating the effects of species diversity and 
environment on trait diversity. The contributions differ 
for each trait, but can be summarized across all traits by 
the volume of the trait cloud (Fig.  8). Taken over all 
traits, the trait volume per species is highest in the south-
eastern and Gulf coastal plain (Fig. 8b). In other words, 
traits are more tightly packed across the rest of the map. 
The inherent trait diversity is reduced by species domi-
nance least and controlled by environmental variation 
most in the Midwest (Fig. 8c), with dry climate and fertile 
soils (mollisols). The effect of the environment is strong 
where there are species that have large response to the 
environment (large |β|) and where the variation in climate 
is large (Q in Eq. S9). The remaining central, northeast, 
and northern lakes regions have the strongest reductions 
in trait diversity due to species dominance.

Discussion

The apparent paradox, that a species model better pre-
dicts controls on trait responses than do the traits them-
selves, is understood from basic principles of aggregation. 
Ecologists have recently argued to shift attention from 
species to traits (Mokany et al. 2008, Lebrija-Trejos et al. 
2010). Many studies look for pattern in trait data that 
can explain environmental constraints on species diversity 
(e.g., Stahl et al. 2013, Lamanna et al. 2014, Kraft et al. 
2015). Results presented here help clarify how models 
can aid analysis of environmental controls on species and 
trait diversity, including why more is learned about traits 
from studying species, rather than from analysis of traits 
directly. It provides perspectives that can guide future 
analysis and interpretation of trait patterns.

The contrasting performance of TRM and PTM comes 
from the fact that information is not recovered by 
analysis of aggregated versions of the same data (Clark 
et al. 2011). Predictive performance is most critical for 
evaluating mechanisms, because it most closely addresses 
the question: “What trait responses result from a given 
environmental scenario?” Here the contrast between 
traits vs species analysis is stark (Figs. 3, 4). The many 
species contributing to the PTM contain information 
that is unavailable to the TRM. Said another way, many 
combinations of species are indistinguishable on the basis 
of CWM values, even when traits are evaluated as a joint 
distribution. Each species brings information, and, 
through PTM, that information is available for pre-
diction. It includes the fundamental relationships 
between species and environment that is lost when species 
are summarized by a few traits. Thus, one can learn more 
from the species themselves.

It would not be correct to attribute the limitations of 
CWM analysis solely to methodology. The differences 
between TRM and PTM result from the fact that a small 
number of measureable traits cannot explain diversity of 
large numbers of species. In CWM analysis variability 
comes solely from the species; traits are everywhere fixed.

The advantage for inverse prediction

The PTM is especially valuable for inverse prediction 
of inputs in X. No single species or trait could predict 
local climate, drainage, stand age, slope, aspect, and soil 
type. Nor could the environment be predicted from inde-
pendent models fitted to each tree species or trait. The 
joint distribution of species can predict all of these vari-
ables together and far better than could be done with 
traits (Fig. 4). The predictive distribution provides a basis 
for clustering species and traits based on responses to the 
environment. Environmental trait covariance (ETC) 

Fig. 7.  The estimated partition for ordinal tolerance classes, 
each on a five-point scale.

0 2 4 6 8 10
Unit variance scale

D
ro

ug
ht

Fl
oo

d
S

ha
de

1 2 3 4



1990� Ecology, Vol. 97, No. 8﻿JAMES S. CLARK

provides a functional basis for communities of species 
and trait syndromes (Figs. 6, 8).

Joint models for species, prediction for traits

This analysis shows clear advantages to PTM, but 
there can still be a role for analysis of CWM trait values, 
the trait response model (TRM). In TRM, the response 
vector is typically small, providing computation advan-
tages. It can be viewed as a type of dimension reduction. 
Trait data also contain fewer zeros, one of challenges 

with modeling species abundance (Ghosh et  al. 2012, 
Clark et al. 2014, Zhu et al. 2014). Although I show that 
large data sets with many species and 90% zeros are 
effectively modeled with PTM, there will still be cases 
where simplification to traits can ease computational 
burden.

Plant functional types

The fact that trait data do not support a classification 
of species into PFTs (Fig. 6) does not mean that there is 

Fig. 8.  Species richness (a), with hypervolumns contributed by trait diversity per species (b, eqn 10a), the reduction in trait 
diversity resulting from non-uniform species abundances (‘species diversity effect’) (c, eqn 10b), and the proportion of the hyper-
volumn contributed by environmental effects (d, eqn 10c).
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no role for PFTs in models. First, species included in this 
analysis do not span the range of PFTs that might be 
used in global models, many clearly differentiated such 
as C3 and C4 grasses. Still, this analysis does span a broad 
range of PFTs, and it does not map to responses of 
species across a broad climate gradient (Fig.  6). The 
important point here is that a PFT class does not have 
to respond differently from all others to have potential 
use in models. Most important in models is that species 
within a PFT class respond similarly.

Inherent syndromes, species diversity, environmental 
control

The need to evaluate relationships between traits and 
species diversity and the environment motivates joint 
predictive trait modeling. This perspective separates 
trait syndromes, i.e., codispersion of traits (TC), codis-
persion induced by species diversity of a sample (WTC), 
environmental trait covariance (ETC), and relative envi-
ronmental trait covariance (RETC) (Table  1). All can 
be cast as distance matrices to reveal their relationships 
to one another (e.g., cluster or correlation analysis; 
Fig.  6) and geographically (Fig.  8). Inverse prediction 
provides sensitivity analysis of large trait distributions 
(Fig. 3b).

Trait variation at the organism scale

Recognition of the importance of trait variation within 
and between organisms predates the recent increase in 
trait studies. From variation within organisms (e.g., sun 
vs. shade leaves, tension vs. compression wood, seed-size 
variation) and between individuals, as the basis for 
adaptive evolution, the role of individual variation is 
critical. Intra-organism and intraspecific variation have 
been increasingly recognized in trait studies (Mitchell and 
Bakker 2014, Moran et al. 2016). Because the subject is 
already large when limiting analysis to CWM trait values, 
I focus here on variation at the species level. However, 
biogeographic analysis of intraspecific variation con-
fronts the same issues addressed here, including the shift 
in reference from individuals to locations, proper 
weighting, and analysis as TRM or PTM.
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