
Bayesian Analysis (2009) 4, Number 2, pp. 1–30

Inference in incidence, infection, and impact:
Co-infection of multiple hosts by multiple

pathogens

James S. Clark∗ and Michelle H. Hersh†

Abstract. A large literature concerns the epidemiology of single pathogens on
single hosts. Yet in some environmental applications, such as fungal pathogens of
forest tree seedlings, the “one host-one pathogen” paradigm may not be applicable.
Multiple potential pathogens are often found in a single individual and/or multiple
hosts share the same pathogens. Understanding diversity requires techniques to
infer how multiple pathogens might regulate multiple hosts and to predict how im-
pacts might vary with the environment. Here we present a hierarchical framework
for the case where there is detection information based on multiple sources (cul-
tures, gene sequencing, and survival observations), and the inference problem in-
cludes not only parameters that describe environmental influences on pathogen in-
cidence, infection, and host survival, but also on latent states themselves–pathogen
incidence at a site and infection statuses of hosts. Due to the large size of the model
space, we develop a reversible jump Markov chain Monte Carlo approach to select
models, estimate posterior distributions, and predict environmental influences on
host survival. We demonstrate with application to a data set involving fungal
pathogens on tree hosts, where data include host survival and fungal detection
using cultures and DNA sequencing.

Keywords: DNA sequence data, forest dynamics, Janzen Connell hypothesis, re-
versible jump MCMC, species diversity, variable selection

1 Introduction

One of the most efficacious mechanisms for maintaining plant diversity could be the
so-called ‘rare-species advantage’ or ‘Janzen-Connell (JC) effect’ (Janzen 1970, Connell
1971). Nature supports large numbers of species that compete for a small number of
resources (e.g., trees compete predominantly for light, water, and several nutrients).
Models used to explore how the high diversity is maintained suggest few options, most
predicting extinction of all but a few species, with coexistence predicted only if there are
precise combinations of traits (Tilman 1988), but these combinations are not observed
in nature (Clark et al. 2007). The JC effect is an exception, predicting that coexistence
of multiple species results from host-specific natural enemies, such as insect herbivores,
seed predators, and plant pathogens (Gillett 1962, Janzen 1970, Connell 1971). Under
this model, seedlings are more likely to survive when dispersed far from parent trees
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2 Inference on co-infection

due to escape from host-specific enemies concentrated near conspecific adults. Patterns
of plant demography consistent with some aspect of JC have been found repeatedly in
both tropical (e.g. Augspurger 1984, Clark and Clark 1984, Wills et al. 1997, Webb
and Peart 1999, Harms et al. 2000, Peters 2003) and temperate forests (Streng et al.
1989, Jones et al. 1994, HilleRisLambers et al. 2002, HilleRisLambers and Clark 2003),
but in all but a few cases the mechanism has not been directly tested.

Microbial plant pathogens, such as fungi, bacteria, and oomycetes (fungi-like protists)
are frequently discussed as the most probable drivers of JC effects (Wright 2002, Gilbert
2002), in part because the microbial community is often abundant and diverse (Torsvik
and Ovreas 2002, O’Brien et al. 2005), a requisite for JC to be effective. The bulk of
evidence supporting pathogen-driven JC effects has highlighted examples of single host-
pathogen combinations (e.g. Augspurger 1983, Packer and Clay 2000, Bell et al. 2006)
or, in some cases, multiple hosts with an unknown number of pathogens (Augspurger
1984, Augspurger and Kelly 1984). However, there is mounting evidence that plants
are simultaneously infected by multiple microbial species, including many that could
act as pathogens (Gallery et al. 2007, Morris et al. 2007), and that these effects may
be non-additive (Bradley et al. 2008). JC has not been tested in a way that allows
for i) the fact that each of the competing plant species could host multiple pathogens,
and ii) the fact that diversity could be enhanced by this mechanism only if there is
a unique pathogen or pathogen combination regulating each host. If natural enemies
are host-specific and thus disproportionately regulate their hosts only when those hosts
are abundant, then as many host species as there are unique limiting pathogens or
combinations thereof might coexist. An increase in pathogen infection with higher
host plant density is a well-documented phenomenon in natural systems (Burdon and
Chilvers 1982). Agricultural monocultures could be taken as an extreme example of
density dependent host regulation, where pathogen and insect outbreaks become much
more likely when a large area is occupied by a single host plant.

Until recently, testing the hypothesis of JC regulation has been challenging due to lack of
adequate data on the pathogens that might regulate natural vegetation. Implicating any
one pathogen as the causal agent of disease is challenging given that multiple species
of fungi and oomycetes (alone or possibly in combination) can cause similar disease
symptoms in seedlings (Agrios 2005). Now that data on fungi and oomycetes residing in
plant tissue are becoming increasingly available, the problem becomes one of complexity:
when there are observations from a large number of host species affected by a large
suite of pathogens, how do we infer their combined effects? We note that for H host
and K pathogen species, the number of host-pathogen combinations is H · 2K which
exceeds 104 for ten species of each. In this paper we provide a general approach to this
problem, showing how a hierarchical model of incidence, infection, and survival can be
implemented in a variable selection context allowing for inference on the JC effect for a
full suite of hosts and their fungal pathogens.

Models of plant disease infection and impact are the subjects of a huge literature (e.g.,
Madden et al. 2007), but largely limited to single pathogens that affect single hosts,
sometimes involving an intermediate vector for the pathogen. From the perspective of
a single host and a single pathogen, we could begin with a simple model of incidence Pj
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at location j, infection Iij of individual i, and detection of infection Dij . Ecologists have
increasingly turned to a combination of culture-based and molecular methods to detect
fungal infection (Arnold et al. 2007, Peay et al. 2008), the former characterized by
relatively high uncertainty, the latter by high cost. However, observations of infection
or lack thereof can be relatively uninformative by any technique. Consider a simple
causal diagram of the problem (Fig. 1). Failure to detect infection could mean that
the pathogen was not present at site j, Pj = 0, that the pathogen was present, but
individual ij was not infected Iij = 0| Pj = 1, or that individual ij was infected, but
infection was not detected, Dij = 0|Iij = 1. Observables include not only detection Dij ,
but also survival Sij . The effect of a pathogen on host survival p (Sij |Pj = 1) depends
on both the probability of infection and the probability of survival given infection or
not. Of particular interest is the probability of infection given that the pathogen is
present, p(Iij = 1|Pij = 1). As described thus far, Pj and Iij are not independently
identifiable. Clearly, we require inference not only on the parameters that link each of
these events, but also on the latent states in the model (incidence and infection).

p(P) = λ

p(I|P = 1) = θ
p(I|P = 0) = 0

p(S|I = 1) = s
1

p(S|I = 0) = s
0

P                     I                     S

D

p(D|I = 1) = φ
p(D|I = 0) = 0

Figure 1: Graph of incidence (P), infection (I ), survival (S ), and detection (D) for a
single pathogen and a single host. Only D and S are observed.

In fact the problem is substantially more complex than Figure 1, because all hosts and
pathogens must be modeled together. Pathogens must be modeled together, because
host survival should depend on the full pathogen load–the JC effect could as readily
apply to combinations of pathogens as it could to individual pathogens. Host species
must be modeled together, because incidence of a given pathogen marginally depends
on all of the host species it might infect–incidence must be inferred, and all host species
contribute information on incidence. The full model then includes incidence Pjk of
pathogen k at j, infection Ihijk of individual i of host species h by pathogen k at j,
and host survival ShijL given the full pathogen load L, ranging from uninfected to co-
infection by all pathogens included in the study. An efficacious JC effect would mean
that there is a high probability that host species h would be regulated by pathogen
k, p (Shk = 0 |Pk = 1)∀ (k ∈ L) for one and only one h-host/k -pathogen combination.
Any other result would diminish the effect, meaning i) that some host species go unregu-
lated (there exists an h for which p (Shk = 1 |Pk = 1) is close to 1 for all k that commonly
occur at all j ) and thus could dominate to the detriment of others or ii) that pathogens
tend to regulate all hosts, never allowing a rare species to benefit disproportionately from
regulation of its abundant competitors (any L for which p (ShL = 1 |Pk = 1) is close to
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0 for all h does not contribute to a rare species advantage). We desire a probability
statement to this effect, a prediction problem involving

p (Sh |E ) =
∑

PL=0,1

∑

IhL=0,1

p (Sh |IhL, E ) p (IhL |PL ) p (PL |E ) (1)

or the probability that host species h survives marginalized over environmental effects
E on incidence, infection by combination IhL, and its effects on host survival.

In Section 2 we describe a model that accommodates these relationships for multiple
fungal taxa that may or may not regulate multiple hosts. Computation follows in Section
3, including reversible jump MCMC (Green 1995, Dellaportas and Forster 1999) as a
basis for evaluating which of the potentially many host-pathogen combinations influence
survival. We further discuss the prediction problem, which addresses the core issue of
how survival of each host is affected by the existence of each host pathogen combination,
recognizing context dependence of both hosts and pathogens. In Section 4 we illustrate
the model with simulated data. In Section 5 we apply it to a data set involving fungal
cultures and DNA sequence data on host tree species planted in experimental plots in
the Duke Forest, NC.

2 Model

2.1 Notation and model relationships

Consider a landscape with locations j = 1, . . . , J, each supporting individuals i = 1,
. . . , nhj of host species h = 1, . . . , H infected with pathogens having index k = 1,. . . ,
K. There are n =

∑
h,j nhj total seedlings. To indicate infection, detection, or survival

for an individual with a specific pathogen we use the subscript k. A population will
consist of some individuals that are uninfected and others that are infected by one or
more pathogens. We wish to infer the pathogen load and what it can tell us about
incidence of all pathogens, probability of infection if the pathogen is present, and the
effect of infection on survival.

To indicate the full pathogen load we use the subscript L, which is a K -tuple of binary
indicators, taking values in the discrete space {0, 1}K . In this application (Section 5) we
consider K = 4 pathogens, including the two found in the largest number of hosts and
two at intermediate levels of abundance that, based on previous knowledge, potentially
have some pathogenic activity (Hersh et al. in prep). For any given host, there are 16
pathogen combinations; no infection is the indicator L = 0 for the quadruple (0,0,0,0);
the indicators L = 1, . . . , 4 represent, respectively, the four singletons (1,0,0,0), (0,1,0,0),
(0,0,1,0), and (0,0,0,1); L = 5 indicates (1,1,0,0) and so forth. The survival model for
species h hosting pathogen load L is designated MhL, with Mh0 indicating uninfected.
There are H × 2K= 96 models in {MhL: h = 1,. . . , 6, L = 0,. . . , 15}.
Detection data include cultures Dhijk, which can have false negatives (failure to detect
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k), p (Dhijk = 0 |Ihijk = 1) > 0, but not false positives p (Dhijk = 1 |Ihijk = 0) = 0, and
DNA sequence data, which are obtained directly from the cultures themselves–thus,
they are taken to be correct. Culture data are available for most sampled individuals;
nuclear ribosomal DNA was sequenced from subset of cultures for further identification.
Because there is observation error, we need to infer infection status for any individual
ij for which detection data are unavailable and for those where a pathogen k was not
detected using either method. We further need to infer pathogen incidence Pjk for
any plot j where no individual is detected with pathogen k. Finally, each infection
combination represents a different model, so we need to compare them all, integrate
them, and assess effects of each of the combinations for each host. The submodels that
follow apply to the state variables and edges of the graph in Figure 1.

The probability that pathogen k occurs at site j is modeled as a logit

Bernoulli (Pjk |λjk )
logit(λjk) = x

(λ)
jk ak = ak + akmmj ,

(2)

where x
(λ)
jk = (1,mj) is a design (row) vector for intercept and soil moisture mj , and ak

is the corresponding parameter vector. We assume a priori that pathogens occur in-
dependently of one another (conditionally), with dependence structure coming through
covariates and hosts.

Infection of individual hij by pathogen k is modeled as

Bernoulli (Ihijk |θhk ) . (3)

Note there is a different infection risk θhk for each host-pathogen combination hk. In-
fection of a single host by multiple pathogens is also taken to be (a priori) conditionally
independent, i.e., p (IhijL) =

∏
k∈L θhk. Survival depends on the full pathogen load

Bernoulli (Shij |shijL )
logit(shijL) = x

(s)
hijLchL.

(4)

where the design vector includes an intercept and the effects of light and soil moisture.
If infection does not affect survival, we have model Mh0,

logit(shij0) = ch + chmmj + chllj , (5)

where mj and lj are soil moisture and light, respectively, covariates known to affect
plant survival. If infection by a single pathogen affects survival, we have a coefficient
for host/pathogen combination hk,

logit(shijk) = ch + chkIhijk + chmmj + chllj . (6)

If hij is not infected by k, then Ihijk = 0. In other words a design matrix for this model
would include a column containing infection status (0, 1) for each individual, {Ihijk}.
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Thus far, the survival submodel seems general–infection by k changes the logit by quan-
tity chk. If k is indeed pathogenic for h, then chk < 0. Once we move beyond a single
pathogen, there is no prior knowledge to guide model building. For example, the par-
simonious model when co-infected by the first two pathogens L = (1,1,0,0) might seem
to be

logit(shijL) = ch + ch1Ihij1 + ch2Ihij2 + ch12Ihij1Ihij2 + chmmj + chllj . (7)

But we have no reason to believe that the effects are additive or that the interaction term
should be of this simplistic form. For example, if already infected by a pathogen with
large effects on survival, co-infection by a second pathogen might not have additional
impact. Conversely, if two pathogens attack a host in different ways, their combined
impact could far exceed those of individual infections. And the complexity compounds
as we move to co-infection by combinations of three and more pathogens. It would be
hard to extend a model like eqn (7) in a way that could accommodate the many types of
potential effects from the 2K combinations. We would inevitably resort to assumptions
that individual parameters have similar impact when combined with different infection
combinations. For example, the parameters ch1 and ch12 could appear in a model that
would contribute to the response in eqn (7) for individuals some of which are co-infected
by a third pathogen, and others not. We have no reason to believe that parameters
should be combined in this way.

Our alternative approach of assigning a distinct parameter to each pathogen combina-
tion L suggests the model

logit(shijL) = ch0 +
15∑

L=1

chLIhijL + chmmj + chllj (8)

= ch0 + chL + chmmj + chllj .

The second line corresponds to individuals infected by combination L. For uninfected
individuals this becomes ch0 + chmmj + chllj . Model Mh0 has three parameters, and
all other models MhL have four parameters. This structure has the advantage that
it does not rely on arbitrary ways that we might represent a pathogen’s effect when
it occurs in different combinations. Moreover, this approach makes it easy to assess
whether combinations have stronger or weaker effects than single infections, by simply
comparing parameter estimates for each unique L. Because models differ in dimension,
we use a reversible jump algorithm to compare models and to derive model averaged
parameter estimates (Section 3).

The model for detection is

binom (Dhijk |Nhijk, φk ) , (9)

where Nhijk is the number of cultures for individual hijk with detection probabilities
φk potentially differing among pathogens, but not depending on the host in which the
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pathogen occurs. The likelihood conditioned on infection for an individual host plant
is eqn (4) or (if detection data are present), the multinomial,

p (Shij , DhijL |IhijL )

= s
Shij

hijL (1− shijL)1−Shij
∏

k∈L

(φk)Dhijk (1− φk)(Nhijk−Dhijk)Ihijk (10)

the product involving detection being included when there are assays.

2.2 Prior distributions

For purposes of transparency, prior distributions for some parameters are truncated. For
the most part, we felt confident in excluding certain parameter ranges (e.g., positive
or negative values), and we believed that these ranges would be acceptable by other
ecologists. For most parameters we did not have strong opinions on central tendency
of prior distributions or their weights relative to the likelihood. The use of normal
prior distributions with large variances, truncated at clearly defensible values facilitates
sensitivity analysis.

For incidence parameters (2) we used the prior

N2

([
ak

akm

] ∣∣∣∣∣

[
a
(p)
k

a
(p)
km

]
, 1000× I2

)
1

([ −30
0

]
<

[
ak

akm

]
<

[
0
20

])
∀k, (11)

where 1 is the indicator function, reflecting the fact that soil moisture is known to
have a non-negative direct effect on fungal growth. The large variance makes this
prior distribution weak. For infection parameters (eqn 3), we used the conjugate prior
θhk ∼ beta (1, 1). For survival (eqn 8), we used

chL = [ch0, chL, chm, chl]
T

∼ N

([
0,−1, c

(p)
hm, c

(p)
hl

]T

,
[
105, 105, 100/n, 100/n

]
I4

)
(12)

× 1
(
[−5,−5, 0, 0]T < chL < [5, 0, 5, 5]T

)

This prior reflects the fact that effects of soil moisture and light are known to have
positive effects on seedling survival. The values for

(
c
(p)
hm, c

(p)
hl

)
are given in Table ??,

based on relative differences in survival from previous studies (Ibañez et al. 2007).
Infection may or may not be pathogenic. The non-negative prior means that these
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fungi cannot be mutualists. However, effects of infection on survival may be zero, a
possibility that enters through the reversible jump implementation (Section 3). For
detection, we used a conjugate beta truncated at values below and above which we
did not expect detection rates for fall. These bounds were based on observations of
multiple trials, φk ∼ beta (1, 1)1 (g1k < φk < g2k). The length-K bounding vectors are
g1 = [0.3, 0.4, 0.3, 0.4]T and g2 = [0.95, 0.85, 0.9, 0.8]T .

Host Light c
(p)
hm Soil moisture c

(p)
hl

acba 0.8 1.5
divi 0.5 0.4
list 1.6 2.0
litu 3.0 3.5
nysy 0.5 0.4
pita 4.0 2.0

Table 1: Prior parameter values for survival model (eqn 11).

3 Computation

3.1 Posterior simulation

Gibbs sampling was used to simulate the posterior. We begin here with a description
for a given model MhL followed by a description of the reversible jump algorithm in
Section 3.2.

The probability that pathogen k occurs at location j conditionally depends on soil
moisture and infection (2). If any seedling is known or imputed to be infected at
location j by k, then we impute Pjk = 1. If no seedlings are imputed to be infected by
k at location j, then

p (Pjk |Ijk = 0) =
p (Ijk = 0 |Pjk ) p (Pjk)∑

P=0,1 p (Ijk = 0 |Pjk ) p (Pjk)
=

λjk

∏
h (1− θhk)nhj

1− λjk + λjk

∏
h (1− θhk)nhj

where nhj is the number of host plants of species h at site j, and Ijk = 1−∏
h,i (1− Ihijk)

= 0 indicates that all host plants at j are imputed to be not infected by pathogen k. We
draw from a Bernoulli with this probability for each (j,k) for which Ijk = 0. Note that
imputation of Pjk is constrained not only by detections on all host individuals (of all
species) at j, but also by informative prior distributions concerning soil moisture effects
(eqn 12).

We need only impute infection status for host-pathogen combinations for which the
pathogen is currently imputed to be present at j, because p (Ihijk |Pjk = 0) = 0, and for
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which there is no detection. We have the conditional probability for pathogen load L,
ignoring for the moment other subscripts,

p (IL |DL = 0, S, PL = 1) =
p (DL = 0, S |IL ) p (IL)∑
{L} p (DL = 0, S |IL ) p (IL)

,

where PL =
∏

k∈L Pk

∏
k/∈L (1− Pk) = 1 if pathogens in L are present. The normalizer

in the denominator is complex, because the probability sijkL must be computed for all
individuals and for all L combinations. We avoid these calculations with a Metropolis
step, which allows us to simply compare current and proposed infection statuses. The
infection of all hij by each k is proposed with probability 0.5. Each individual now has a
current and a proposed L. Of course all known host/pathogen infections–those occurring
on sites j where pathogen k is currently imputed to be absent and any positive detections
of k on hij–are set to their known values. Conditional on incidence and infection we
have

p (IhijL |Shij, (Pjk = 1, Dhijk = 0) ∀k ∈ L )

∝ p (Shij , DhijL = 0, |IhijL ) p (IhijL |PL = 1)
= s

Shij

hijL (1− shijL)1−Shij
∏

k∈L (1− φk)NhijkIhijk

×∏
k θ

Ihijk

hk (1− θhk)1−Ihijk .

This quantity is computed for current and proposed infections.

For incidence parameters a, values were proposal from a normal truncated at the bounds
given in eqn (12) and centered on the current value. Acceptance was based on the ratio
of likelihoods with proposed and current values in eqn (2). For infection, we sampled
from

θhk ∼ beta


1 +

∑

ij

Ihijk, 1 +
∑

ij

(1− Ihijk)Pjk


 .

For detection, we sampled from

φk ∼ beta


1 +

∑

hij

Dhijk, 1 +
∑

hij

(Nhijk −Dhijk) Ihijk


1 (g1k < φk < g2k) .

For survival, parameters are updated as part of the reversible jump algorithm (Section
3.2).
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3.2 Reversible jump variable selection

We are interested in the joint distribution of survival effects for each model-parameter
combination(cM ,M). We implement a reversible jump algorithm (Green 1995, Brooks
et al. 2003) to determine model probabilities and posterior distributions conditional
on specific models and averaged over models. The model where none of the pathogens
affect survival is indicated by Mh0 (eqn 8, second line) and models where at least one
combination of pathogens affects survival is indicated by MhL: L =1,. . . , 15 (eqn 8,
third line). The parameter vectors for two such models are

Mh0 : c0 = (ch0, cm, cl)
MhL : cL = (ch0, chL, cm, cl)

having dimensions d(Mh0) = 3 and d(MhL) = 4, respectively.

Although our application includes covariates, we recognize that this may not always be
the case and first address the simpler problem without covariates. In the absence of
covariates we have

Mh0 : c0 = (ch0)
MhL : cL = (ch0, chL)

Let whL = n−1
h

∑
ij IijhL be the fraction of individuals of host h co-infected with the

combination of pathogens L. By expressing the model in terms of a unique combination
of pathogens for each individual ij we have IhijLIhijL′ = 0,∀ (L 6= L′), which accounts
for the sparseness of X

(s)
hijL, the design matrix for which eqn (4) represents a single row,

and simplifies results that follow. Let cM be the parameter vector associated with model
M, where we do not wish to distinguish between the reduced model M0 and one of the
enlarged models ML. The target density for the survival component of the model is

p (cM ,M |{Shij} ) ∝
∏

ij

Bernoulli (Shij |cM ) p (cM |M ) p (M)), (13)

where p(cM ) is given by (eqn 11). For a move between models(cM ,M) → (cM ′,M ′) we
have the acceptance criterion A= min(1, a), where

a =
p (cM ′,M ′ |{Shij} )
p (cM ,M |{Shij} )

× JM ′q (u |u′ )
JMq (u′ |u )

×
∣∣∣∣
∂GM,M ′ (cM , u)

∂ (cM , u)

∣∣∣∣ , (14)

JM is the probability of drawing model M, u ∼ q () = N (0, U) is the density for a
dimension-matching parameter u, and G is the injection that maps parameters from
model M to M ′ (Green 1995). In the application that follows (Section 4) the proposal
probability for model M is JM = 1/mh. mh is the number of models available for
host h, which includes all combinations in {L} for which there is currently at least
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one (imputed) infected individual–any combination L including infections not currently
imputed to occur is not included in the sample of models. We now discuss a function
that maps the current parameter vector and u onto M ′. We assume a priori that all
models have equal probability.

−5 0 5 10 15 20

−
1
0

0
1
0

2
0

3
0

P
o

s
te

ri
o

r 
e

s
ti
m

a
te

s

Parameters on logit scale

Survival pathogens

Survival covariates

Incidence covariates

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

True values

Parameters on probability scale

Infection

Detection

Figure 2: Posterior estimates for chk (’survival pathogens’), {chm × m̄} and {chl × l̄}
(’survival covariates’), ak (’incidence covariates’), {θhk} (’infection’), and {φk} (’detec-
tion’) plotted against true values used to simulate data. To place them on the common
logit scale, soil moisture and light parameters are scaled by mean soil moisture m̄ and
mean light l̄. Posteriors are represented by median (dot), 68% (thick line), and 95%
(thin line).

The basic mapping for the transition (cM ,M) → (cM ′,M ′) is

cM ′ = GMM ′ = gMM ′cM , (15)

where gMM ′ = ∂G(cM )
∂(cM ) is the Jacobian, cM is the current parameter vector, and cM ′ is

the new parameter vector. There are three possible changes in dimension. First, the
proposed model M ′ may be of the same dimension as M. If so, there is no u. To optimize
acceptance rates, we equate likelihood support, setting XM ′cM ′ = XMcM and solving
to obtain

gMM ′ =
(
XT

M ′XM ′
)−1

XT
M ′XM =

[
1 whM

1−whM′
0 − whM

1−whM′

]
.

The determinant is |gMM ′| = whM

1−whM′
. One might propose from, say, N2 (cM , 0.2I2) and

accept with probability
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a =
p (M ′, cM ′ |{Shij} )
p (M, cM |{Shij} )

× whM

1− whM ′
.

The reverse move has

gM ′M = g−1
MM ′ =

[
1 1
0 − (1−whM′)

whM

]

and determinant |gM ′M | = 1−whM′
whM

. If the chosen models are the same, then gMM ′ is
the 2 by 2 identity matrix, the determinant is 1, and we have the simple Metropolis
acceptance probability,

a =
p (cM ′,M ′ |{Shij} )
p (cM , M |{Shij} )

.

For increases or decreases in dimension an injection can be defined in terms of weights
whM . We do not pursue this further, but turn instead to the application that includes
covariates.

Consider now the models in eqn (8). For the case where current and proposed are the
same we use simple Metropolis. If the same dimension, we equate likelihood support
with GMM ′ = gMM ′cM , where gMM ′ =

(
XT

M ′XM ′
)−1

XT
M ′XM . If the current model is

M = (M0, c0), and a proposed model isM ′ = (ML, cL)∀L > 0 we have an increase in
dimension and draw a new vector (ch, u) based on a draw from a truncated normal hav-
ing mean given by the current value N4 ((ch, u′) , UI4) 1 (u < 0), where u′ is an auxiliary
variable, taken to be most recent value for the parameter chL′, i.e., when it was last
included in the model (Brooks et al. 2003). The truncation at zero reflects the prior
that these could be pathogens and can reduce survival, but not increase it. Means for
the other parameters are taken at the current values. The determinant of the Jacobian
is 1 and the acceptance probability is

a =
p (cM ′,M ′ |{Shij} )

p (cM ,M |{Shij} )N (u |u′ , U)
.

If U is small, moves to the smaller of the two models will be rare, due to the density in
the denominator (Brooks et al. 2003).

If the present model is M = (cL,ML) and the proposed model is M ′ = (c0, M0), then
the proposal represents a decrease in dimension. Then u is deterministically set equal
to chL. The determinant of the Jacobian is still 1, and acceptance is

a =
p (cM ′,M ′ |{Shij} )
p (cM ,M |{Shij} )

×N (u |u′, U ) .
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in simulated data from Figs. 2, 3. Detections decline for higher model numbers, because
fewer host individuals are infected with increasing numbers of pathogens.
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The posterior model probabilities are compared with reference to the reduced model for
the corresponding host h. An efficient scheme is to simply tally the fraction of times in
which the larger model is selected over the reduced model. This approach assures that
model M is currently available (we only propose models for which there are currently
imputed infections) and provides the probability with reference to Mh0. We call this
p(MhL).

3.3 Pathogen-effects prediction

We desire the probability of survival of hosts {h} for each pathogen load L, given that
all pathogens in L are present, as compared to that for individuals in the absence of
pathogens, p (Sh0 = 1 |PK = 0)= sh0, where PK = 1−∏K

k=1 (1− Pk) = 0 indicates that
no pathogens are present. The probability of survival with pathogens in L being present
at the site can be expressed as

p (ShL = 1 |PL = 1) = p (ShL |Ih0 ) p (Ih0 |PL = 1) + p (ShL |IhL ) p (IhL |PL = 1)

= sh0

∏

k∈L

(1− θhk) + shL

∏

k∈L

θhk, (16)

where Ih0 indicates uninfected by pathogens in L, IhL indicates infection by all pathogens
in L, and PL = 1 indicates that only pathogens in L are present. Of course, we could
include terms for survival given infection by subsets of L, in which case we would have
the combined effects of all subsets of L. Here we are interested in isolating the effects
of the combination L vs ’not L’. These posterior distributions are taken at the mean
values for light and soil moisture of the data set.

We further predict how covariates mediate effects of individual pathogens. Pathogen
incidence depends on soil moisture, and host survival depends on both soil moisture
and light.

p (Sh |m, l ) =
∑

Pk=0,1

∑

Ik=0,1

p (Sh |Ik,m, l ) p (Ik |Pk ) p (Pk |m )

= sh0(m, l) (1− λk (m)) + sh0(m, l) (1− θhk)λk (m) + shk(m, l)θhkλk (m) . (17)

The three terms are, respectively, pathogen absent, incidence but not infection, and
infection. For predictive distributions we approximate integrals over the posterior with
draws from Gibbs chains.
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4 Simulation studies

We used simulation studies to evaluate the model. The simulation involved these steps:

1. Observations: To match the application that follows, assume H = 6 host species,
and K = 4 pathogens for a total of H × 2K = 96 possible infection combina-
tions. We show an illustration with J = 100 plots and n = 2000 individuals,
enough to provide a range of representations for each infection combination and
be comparable to our application.

2. Parameters: Specify parameter values for ak (incidence, eqn. 2), {φk} (detection,
eqn 9), θhk (infection, eqn. 3), and chL (survival, eqn 4). For incidence, we
used a range of positive values for effects of soil moisture. For detection, we
drew from φk ∼ unif(0.5, 1), and for infection we drew from θhk ∼ unif (0.2, 0.8).
For survival, we assumed that the ‘true’ model consists of a subset of the 96 total
models, drawn at random uniformly from the 96. All models include a host-specific
intercept ch ∼ unif (0, 1), and the effects of light and soil moisture, spanning the
range of values used as prior distributions. The survival parameters are drawn
from chk ∼ N (−2, 4) I (−10 < chk < −1). Distributions reflect assumptions that
light and soil moisture have a positive effect and pathogens have no effect or a
negative effect on survival.

3. Pathogen incidence (eqn 2): Draw a random length-J covariate vector from a
uniform distribution for soil moisture values and concatenate with a column of ones
to produce the design matrix X(λ). Calculate λjk and simulate ‘true’ incidence as
Pjk ∼ Bernoulli (λjk).

4. Infection (eqn 3): Draw ‘true’ infections from Ihijk ∼ Bernoulli (θhk)× Pjk. For
each individual there is a K tuple of zeros and ones indicating infection by each
pathogen.

5. Detection (eqn 9): Comparable to the application that follows, assume five cul-
tures per individual for each of detection types, i.e., Nhijk = 5 and simulate
detection data, that for cultures being Dhijk ∼ binom (Nhijk, φk) × Ihijk. Also
comparable to the application that follows we assumed that 30% of individual
cultures were sequenced.

6. Survival (eqn 4): Assemble the design matrix for survival from soil moisture (step
3) and J light levels, the latter simulated as a vector of uniformly distributed ran-
dom variables. The design vector x

(s)
hijL contains light and soil moisture values and

ones in columns corresponding to the host-specific intercept and the subset of 96
columns corresponding to the infection combination for individual hij. All other el-
ements are zeros. Calculate logit(shijL) = x

(s)
hijLchL, where chL are zeros except for

those that are contained in the ‘true’ model, and draw Shij ∼ Bernoulli (shijL).

Some general guidelines emerged from simulation studies, illustrated with an example
in Figures 2 through 4. First, simulations confirm that the Gibbs sampler converges and
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can recover parameter values. All models are visited by the Gibbs sampler, and chains
for model probabilities and parameter estimates converge within 103 to 104 iterations.
The accuracy and precision varies across the different parameter estimates in part due
to the fact that some host-pathogen combinations can be abundant while others are
rare. Despite weak prior densities, parameter values are recovered, the example in
Figure 2 being typical. The pathogen effects on survival are of particular interest and
are explored in further detail in Figures 3 and 4.

With the exception of cases where detections are rare and/or effects are weak, correct
models are typically recovered. The posterior model probabilities from this example
(upper panel of Figure 3) show the tendency for some false positives to occur for host-
pathogen combinations that are not well represented in the data–p(MhL) values > 0.5
can occur for the wrong models when detections fall to the range of 5 to 10 observations
(middle panel of Figure 3). However, posterior densities for these false positives have
mass centered near zero (models 81 and 82 are false positives, shown in Figure 4).
Models 91 and 92 represent a different situation, being correctly identified, despite few
detections (Fig. 3). Rather than being concentrated near zero, as in the case of false
positives, the posterior simply recovers the prior (upper panel in Figure 4). Thus, we
apparently have a distinction between false positives and correct models, when sample
size is low.

False negatives can occur because effects are small, in which case we might not call
them ’false’, or because risk is high for other reasons, such that the additional risk from
a deleterious pathogen would not be detected. A unit change on the logit scale has
larger effect on probability when the logit is near zero and probability near 0.5. False
negatives do not occur in the example shown in Figure 3.

The model performs well for larger numbers of combinations, provided sample sizes are
large enough to include adequate representation. The model space is enlarged by an
order of magnitude in Figure 5, with H = K = 7, or 896 combination, a sample size
of n = 10,000, and 20 ’correct’ models. To omit the region of ’maximum uncertainty’,
taken to be 0.4 to 0.6, we determined false positives to be above this region and false
negatives below. We still correctly identify those where detections exceed 5 to 10–
false positives (0.45% in this example) are dominated by combinations that are rarely
observed. Additionally, false negatives occur if both the detections are few (middle
panel) and the effect is small (lower panel). Experiments of this size are feasible and
relevant. It is worth noting that even when many combinations have detections in the
range of five, the error rate is quite low (lower panel).

A provisional rule of thumb appears to be that, if there are few detections, a model with
high posterior probability, but density concentrated near zero, might be viewed as a false
positive. On the other hand, a broad posterior density for the effect of a model assigned
high probability might signal need for larger sample size. Finally, models assigned
posterior probability > 0.5 with numbers of detections exceeding 10 observations are
likely correct.
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5 Application

We used this model to determine if fungi inhabiting seedlings in the Duke Forest could
be differentially affecting tree seedling survival, and whether these impacts on survival
are consistent with the Janzen-Connell hypothesis, i.e., there are specific pathogen com-
binations regulating different hosts. The data set consisted of H = 6 host plants and
K = 4 potentially pathogenic fungal species. There are J = 60 plots from the Duke
Forest, Chapel Hill, NC, where planted seedlings were assayed by culture and DNA se-
quencing for potentially pathogenic fungi (Table 2). Hosts are referenced by codes acba
(Acer barbatum), divi (Diospyros virginiana), list (Liquidambar styraciflua), litu (Liri-
odendron tulipifera), nysy (Nyssa sylvatica), and pita (Pinus taeda) and fungi by codes
COLA (Colletotrichum acutatum), CY A (Cylindrocarpon destructans), PHOMOPBC
(Phomopsis sp. BC), and PILI (Pilidiella sp. A). C. acutatum and C. destructans are
known pathogens of multiple plant hosts, including trees (Peres et al. 2005, Dahm and
Strzelczyk 1987); they were also the two most commonly isolated fungi in this study
(Hersh et al. in prep). Phomopsis sp. BC and Pilidiella sp. A, though not yet identified
to the species level, are members of genera that contain multiple known tree pathogens
(Rossman et al. 2007). Phomopsis sp. BC and Pilidiella sp. A were of intermediate
abundance (Hersh et al. in prep). These fungi are also capable of infecting some hosts
asymptomatically and may have minimal effects on survival; thus we refer to them as
“potential pathogens” given that pathogenicity likely depends on both host identity and
environmental conditions.

There are light and soil moisture measurements for each plot {(lj, mj): j = 1,. . . ,
J}, which are uncorrelated (r = -0.065). Seedlings were followed for one year. Those
that died, along with a subset of survivors, were assayed for potential pathogens by
isolating cultures on alkaline water agar (AWA) and Penicillin Rifampicin Amlicillin
Pentachloronitrobenzene (PARP) media. Cultures were then transferred to Potato
Dextrose Agar (PDA) or Corn Meal Agar (CMA), respectively, to allow for further
growth. PDA cultures were then initially scored by macroscopic morphology (cultures
growing on CMA do not exhibit the same level of morphological variation). A subset
of cultures was further identified by DNA sequencing of the internal transcribed spacer
(ITS) region of ribosomal DNA using primers ITS1F (Gardes and Bruns 1993) and ITS4
(White et al. 1990), recognizing cost considerations. Morphological identifications are
less costly, but subject to greater error (e.g. Stefani and Berube 2006). Molecular iden-
tifications, obtained for a subset of cultures, are more reliable. Thus, individual-level
observations consist of survival and zero, one, or two types of detection data. With the
exception of the combination of host L. tulipifera and fungus Pilidiella sp. A, all indi-
vidual host/fungus combinations were directly detected in the data (Table 2), but only
some of the combinations that involve multiple fungi on a single host were detected.
Moreover, only one L. tulipifera individual survived (Table 2). Given simulation re-
sults (Section 5), we anticipate that detections could limit inference for many of the
host-fungus combinations in our data set.

The Gibbs sampler was initialized with infection status Ihijk = 1 if k was detected on
h and with a Bernoulli draw and probability 0.5 otherwise, and with Pjk = 1 if any
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Figure 7: Posterior model probabilities ranked in order by host, then probability. Models
for which there were < 2 detections are not shown.
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Host
acba divi list litu nysy pita

Survived 81 25 52 1 62 8
Total 131 47 150 29 116 153

Detections
PDA-COLA 28 5 9 4 14 9
PDA-CYA 5 7 6 2 8 8
PDA-PHOMOPBC 0 1 9 1 2 1
PDA-PILI 2 1 4 0 3 1
ITS-COLA 22 6 5 2 11 4
ITS-CYA 7 6 8 2 8 9
ITS-PHOMOPBC 2 1 6 1 4 0
ITS-PILI 2 0 3 0 4 0

Posterior inclusion probabilities for survival
COLA 0.34 0.45 0.39 0.62 0.42 0.64
CYA 0.34 0.37 0.45 0.60 0.37 0.65
PHOMOPBC 0.32 0.52 0.42 0.61 0.43 0.58
PILI 0.34 0.56 0.37 0.56 0.45 0.60

Table 2: Number of survived and total seedlings (above), number of detections (middle),
and model averaged estimates that a pathogen is included in the survival model (below).

host were found to be infected by k at j and randomly otherwise. All parameters were
initialized with draws from the prior distributions. We report results from a single long
chain following 106 burnin iterations. Repeated simulation from different initializations
confirmed convergence. All models including combinations for which there were no
detections were visited by the RJMCMC algorithm.

Estimates of infection rate θhk = p(Ihijk|Pjk = 1) varied substantially, with only modest
tendency for different hosts to experience highest infection rates by different fungi. A.
barbatum, N. sylvatica and P. taeda were most often infected by C. acutatum (Figure
6). C. acutatum and C. destructans were estimated to be the most common infections.
There is large uncertainty for infection of L. tulipifera, the host tree with the smallest
sample size and almost no surviving individuals. P. taeda tends not to be infected by
Phomopsis sp. BC and Pilidiella sp. A. A. barbatum also has low risk of infection by
Pilidiella sp. A.

Given infection, survival did show evidence that different hosts are regulated by different
pathogens. Figure 7 shows posterior model probabilities, omitting combinations with
few detections. In light of simulations, values below 0.4 provide substantial evidence for
weak or no effect on host survival in this data set. In simulation, false negatives are rare
and limited to cases where there are few detections or effects too small to have impact.
False positives as high as 0.6 are also rare, but cannot be ruled out given that numbers
of detections in our data set is marginal. With the exception of Acer barbatum, each
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host showed posterior model probabilities > 0.5 for a different infection combination.
However, posterior densities suggest that there is not strong evidence for the strength
of the effects, with many posterior densities not differing substantially from the prior
(Fig. 8).

0
.0

1
.0

pita.COLA

p(M) = 0.74

detections = 8

pita.CY_A

p(M) = 0.7

detections = 8

nysy.COLA−CY_A

p(M) = 0.68

detections = 6

−10 −8 −6 −4 −2 0

0
.0

1
.0

list.CY_A−PHOMOPBC

p(M) = 0.66

detections = 5

−10 −8 −6 −4 −2 0

litu.COLA

p(M) = 0.65

detections = 3

−10 −8 −6 −4 −2 0

pita.COLA−CY_A

p(M) = 0.64

detections = 2

−10 −8 −6 −4 −2 0

divi.PHOMOPBC

p(M) = 0.6

detections = 2

Parameter value (logit scale)

D
e

n
si

ty

Figure 8: Posterior (black) and prior (green) densities for cmL for parameters in models
with highest posterior probability and adequate sample size.

The posterior inclusion probability (Scott and Berger 2009) of pathogen k on host
h is calculated as the fraction of times that any of the models containing pathogen
k is chosen relative to proposed, a calculation that is conditional on infection (Table
2). These estimates suggest that all four potential pathogens occur in combinations
affecting survival of L. tulipifera and P. taeda at probabilities > 0.5. None exceed
0.5 for A. barbatum. The contrast between the probabilities for individual pathogens
compared with their appearance in combinations (Fig. 7) highlights the importance of
considering the full pathogen load.

Due to modest effects on survival parameter estimates, the integrated effects of infection
on survival were also modest. Predictions from eqn 17 (Fig. 9) were lower than for
uninfected cases for D. virginiana, L. styraciflua, and N. sylvatica (dashed lines in
Figure 9). Broad overlap with the uninfected densities (dashed lines) suggests a weak
effect on survival. However, limited differences on an annual basis could accumulate over
years, or magnify during years of extreme soil moisture levels, beyond the range observed
in this study. Predictive distributions for specific light-soil moisture combinations (eqn
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17, densities not shown) did not show large effects of covariates for this study.

6 Discussion

With the increased accessibility of molecular tools for identification of potential micro-
bial pathogens and continued interest in the role of disease in shaping plant communi-
ties, we expect data sets like ours to become increasingly available, with observations
consisting of survival, detection of infections, and, sometimes, environmental covari-
ates. Because the diversity of fungi in plant tissue can be high (Vandenkoornhuyse et
al. 2002) and many fungi commonly isolated from plant tissue are capable of multiple
lifestyles (Moricca and Ragazzi 2008), even preliminary information on how fungi affect
host survival are largely unavailable. There is little prior guidance for variable selection,
because pathogenic potential is likely dependent on environmental conditions and poten-
tially contingent on the combination of infections to which a host plant is exposed. Due
to the many ways in which combinations of potential pathogens and context-dependent
host resistance could influence survival, there can be advantages to the modeling and
computation approach taken here, where each combination of potential pathogens is
represented by a specific model, and it may or may not affect survival in ways that
differ from other combinations. The computational approach mixes over what could be
a large number of combinations, extracts those supported by the evidence, and allows
for direct comparison of their effects. Because we can readily integrate over the com-
bined impacts of covariates on incidence and infection, we can directly address a critical
question for rare-species advantage: How are our predictions of host survival across
environmental gradients modified when analyses incorporate pathogens both singly and
in combination? (e.g., eqns 13, 14). This capacity to extract from a large model space
specific combinations that might have impact could facilitate analysis of environmental
effects on incidence, infection conditioned on incidence, survival conditioned the full
pathogen load, and covariates that could affect not only efficacy of the pathogen, but
also host capacity to survive infection.

The initial results of this analysis demonstrate that the effects of these fungi on plant
survival are not additive. In some cases, such as Pinus taeda, the effects of infection
by either Colletotrichum acutatum or Cylindrocarpon destructans are roughly equiv-
alent, and in fact also equivalent to their combined effects. In other cases, impacts
on survival only become apparent when seedlings are infected in combination. In this
case, L. styraciflua is not negatively affected by Phomopsis sp. BC or Cylindrocarpon
destructans, alone, but is when these fungi are found in combination. These prelimi-
nary results suggest that some fungi, though isolated from multiple hosts, may not have
equivalent impacts on all potential hosts (for example, Phomopsis sp. BC only impacts
the survival of D. virginiana and L. styraciflua) while others have minimal impacts
on all hosts (Pilidiella sp. A). Conversely, some hosts (A. barbatum) seem to not be
strongly affected by any of these fungi, singly or in combination. The incorporation of
additional fungal species isolated from this site (Hersh et al. in prep) will shed further
light on whether unique limiting pathogens or combinations thereof might exist for each
host species, and if the impacts of the fungi identified in this system are consistent with
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Figure 9: Posterior probability of survival accounting for the probability that fungal
combination L is present at a location, probability of infection by all taxa in L, and
effects on survival.
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the predictions of the Janzen-Connell hypothesis. Given that combinations of infections
are common in nature, but many models only allow for a single infection at a time, this
model provides novel insight into how multiple infections may affect survival.
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