
Ecological Archives M080-020-A1 

James S. Clark, David Bell, Chengjin Chu, Benoit Courbaud, Michael 
Dietze, Michelle Hersh, Janneke HilleRisLambers, Ines Ibáñez, Shannon 
LaDeau, Sean McMahon, Jessica Metcalf, Jacqueline Mohan, Emily 
Moran, Luke Pangle, Scott Pearson, Carl Salk, Zehao Shen, Denis Valle, 
and Peter Wyckoff. 2010. High-dimensional coexistence based on 
individual variation: a synthesis of evidence. Ecological Monographs 
80:569–608. 

 



 1 

Appendix A.  
In this appendix we describe prior distributions, conditional relationships and distribution theory 
needed for algorithm development, algorithms used for Metropolis within Gibbs, and some 
issues related to MCMC diagnostics. 

PRIOR DISTRIBUTIONS 

The analysis includes both informative and non-informative prior distributions.  Where possible, 
we used informative prior distributions that are flat but truncated at limits based on previous 
study, to maximize transparency, i.e., for clear identification of the contributions of prior vs 
likelihood. Here we summarize prior distributions and how they were selected to balance 
information. 

Parameters for the logit function of maturation eqn 7b were assigned the prior  
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The prior mean values are consistent with knowledge that maturation probability increases with 
diameter and exposed canopy area.  Large variances in Vθ make the contribution from bθ small. 
Furthermore, there is a prior on minimum and maximum maturation diameters Dmin, Dmax, based 
on values below and above which we have not observed immature and mature status (Table A1).  
The recognition probability for observing maturation status (eqn 4) has prior density 
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where values center the prior density on 0.5 weighted by the number of tree years, v1 = v2 = 
0.002nIJT (Table A1).  The prior mean of 0.5 was based on previous success rates (Clark et al. 
2004).  The small values for v1 and v2 give the prior low weight. 

For dioecious species, the female probability has the prior  
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with     

! 

h1 = h2 = 4 , having a mean of 0.5.  This weak prior had no discernable effects on the fit. 
The coefficients associated to the fixed effects in the state-space model in eqn 8 have flat 

priors bounded by values either having theoretical justification or sufficiently wide to not impact 
estimates, 
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where a(1) and a(2) are matrices having the same dimensions as A containing of minimum and 
maximum values, respectively (Table A1), and vec(A) = [A11,…., A p1, A 12,…, A p2] is a vector 
obtained by stacking columns of A.  We describe prior values for specific elements of A, using 
indexing A11 for the first row and column of A (eqn 8e): 
(A11, A12) - intercept: for all species intercepts we use priors with limits wide enough to have no 
influence on estimates. 
 (A21, A22) - diameter effect on diameter growth increment and fecundity:  Priors on the four 
parameters for diameter effects reflect the facts that increasing diameter increases fecundity until 
trees become large, and at some point both growth and fecundity could decline. The rationale is 
as follows. Allometric arguments and empirical evidence suggest that potential fruit yield should 
scale with canopy width, which, in turn is roughly proportional to diameter.   However, this 
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potential should not be realized for trees crowded by neighbors.  Priors help us separate the two 
effects, diameter versus light availability.  We allow for the effect of size on potential yield with 
the constraint 1.5 < A22 < 3.5)(Niklas and Enquist 2003, Clark et al. 1998).  Modification of this 
effect by competition enters in the constraints on exposed canopy area, i.e., the term including λ.  
Empirical data summarized by Niklas and Enquist (2003) suggest that reproductive organs 
should be proportional to (stem biomass)a, where 0.6 < a < 1.0.  Because stem biomass scales as 
D3, this gives a ranges of 1.8 < A22 < 3.  Thomas (1995) reports reproductive organs proportional 
to D5, but none of our estimates approached values this high in extensive experiments with the 
model. We note that such high exponents could be obtained if both immature and mature 
individuals were included in the fecundity model, but our fecundity model is conditional on 
mature status. 

Diameter can be correlated with diameter growth increment, because tall trees have 
greater access to light.  Because that relationship should be attributed to canopy exposure, rather 
than to tree diameter directly, we constrain parameter A21 to be near zero.   This assumption still 
allows a relationship between growth rate and diameter, but it acknowledges that the relationship 
operates through the capacity to capture light.  From open-grown trees there is no clear evidence 
for a direct size effect on diameter increment once trees exceed the seedling stage, until they 
become large. Instead of a direct effect of diameter on growth rate, the correlation between tree 
size and diameter growth increment is expected to result from the fact that large trees are more 
likely to have higher light exposure. The limits are -0.02 < A21 < 0.02. The effect of diameter as 
trees become large is taken up by the next parameter. 
(A31, A32) - large diameter effect is negative: The squared diameter term is included to allow for 
potential senescence, a decline in physiological function with age (Ryan and Yoder 1997).  Tree 
data sets rarely have sufficient large (potentially old) individuals to estimate these effects, but we 
can allow that senescence does eventually occur by specifying that this effect only has impact for 
especially large individuals.  These terms are constrained to be negative. 
(A41, A42) - canopy exposure effect is non-negative: Light availability increases growth rate and 
fecundity. 
(A51, A52) - lag-1 effect of growth rate on growth rate and fecundity: This effect was constrained 
to be effectively zero for growth rate (A51) but unconstrained for fecundity (A52).  We wanted to 
parameterize the effect on fecundity, so it could be used for predictive modeling of potential 
tradeoffs in time between growth and fecundity. 

Because estimates of growth and fecundity balance contributions from the regression 
(i.e., the diameter and light covariates in eqn 8) and data models for growth rates and seed data 
(Fig. 3), we used an informative prior on the error covariance matrix Σ to represent a level of 
variation expected after that taken up by covariates, random effects, and year effects and to 
assure that covariates were not overwhelmed by noise.  The values used for variances on the log 
growth (cm) and log fecundity (seeds per tree) were 0.05 and 0.5, respectively. The prior density 
is Wishart, 
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where the weight of the prior is controlled by 
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(Table 5) , and VΣ = diag(0.05,.0.5).  Through extensive sensitivity analysis, this prior was found 
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to provide an acceptable balance of data and regression model, contributing to the conditional 
posterior approximately twice the weight coming from the regression. 

Priors on random effects and year effects were weak--we wanted data to dominate these 
estimates.  The prior for the random effects variance is 
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where rb = nIJ/100, Rb = diag(0.2,2) and 
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nIJ = I jj
"  is the number of trees.  rb was rounded to 

an integer value and ranged from 3 to 180 for different species..  
The prior for fixed year effects is noninformative 
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and includes a sum-to-zero constraint (intercepts are included in A), implemented directly in the 
Gibbs sampler.   

Because many individuals are not mature, a separate univariate model applies (eqn 6).  
The covariates are the same as those listed for the multivariate regression given above with 
priors being flat and truncated at the same values for adult growth. 

Diameter growth increments have a prior for each tree year taken from the posterior from 
the analysis of Clark et al. (2007b) truncated at two standard deviations, based on the prior belief 
that true increments should be within this range.  Diagnostics showed that posterior estimates 
from this analysis did not tend to accumulate at these truncation values.  The prior for diameter 
increments is 
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where 
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dij,t
(0) and vij,t are the prior mean and variance for log growth rate from the analysis of 

Clark et al. (2007)(Fig. 4) , and 
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dij, t

(1)  and 
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dij, t

(2)  are one standard deviation below and above the 
prior mean.  In other words, values cannot deviate widely from the posterior estimates from the 
growth analysis, but there is flexibility for values having weak support. 

Priors for fecundity and missing seed data were either noninformative or derived from 
previous observations.  A flat prior was used for fecundity, truncated at the smallest number of 
seeds observed for a tree and at values much larger than implied by observation of seed densities, 
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(Table A2).  For instance, when defining f(1), we did not expect that a mature individual would 
produce less seeds than typically contained in a single fruiting structure (e.g., Pinus, 
Liriodendron, Liquidambar).  For maximum values, we used the prior estimates for parameter u 
and inverted observations of seed densities from the forest floor (eqn 2), to solve for fecundity, 
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observed at average densities of 102 seeds m-2 beneath mature trees but not at average densities 
of 103 seeds m-2.  This inversion was used not only to set limits on fecundities and as a crude 
initialization for posterior simulation (Appendix).  The prior for missing seed data is 
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where gk,t is average for the trap and year for which data are missing and the upper and lower 
bounds are limits based on observation for the stand values ever observed for the site. 

Prior densities for the seed data model in eqns 1-3, including the dispersal parameter and 
the seed fraction originating outside the map, were 
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where parameter values were chosen to be informative (Table A2).   
The monotonicity priors on the parameters in eqn 9 are detailed in Clark et al. (2007, 

Appendix).   

CONDITIONAL RELATIONSHIPS 
State-space model 

For parameters in the state space submodel (eqn 8), all sampling was direct.  The conditional 
posterior for fixed effect parameters includes the prior from eqn A.4 
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where p is the number of covariates, X is the stacked matrix of (Tij - τij) by p 
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Xij  matrices for 

each tree, Z= [Z 11 Z 21 … ] is the stacked matrix
      

! 

Zij = Yij "1ij bt , Yij is the (Tij - τij) by 2 matrix 
of responses (eqn 8a), 1ij is the length (Tij - τij) vector of 1's, and τij and Tij are the first and last 
years during the study in which individual ij is imputed to be mature. The truncated multivariate 
normal is sampled from the conditional univariate truncated normals bounded by a(1) and a(2) 
(eqn 13). 

The error covariance matrix was sampled from an inverse Wishart conditional posterior, 
incorporating the prior from eqn A.5.  The conditional posterior for Σ-1 is  
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posterior for the random effects variance is 
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the prior coming from eqn A.6.  Note that individual ij contributes to the conditional posterior 
only if it is imputed to be mature at some point during the study, in which case 
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The random effects are sampled from  
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The fixed year effects are sampled from a conditional normal with prior from eqn A.7.  The 
conditional posterior is  
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This draw was followed by subtraction of the mean year effect for both lnd and lnf, imposing a 
sum-to-zero constraint. 

Diameter growth 
Diameter growth increments were updated from the conditional posterior that is the product of 
eqns 6a or 8b for growth, eqns 5 and 9 for survival, and the prior given in eqn A.8.  For survival, 
we use a Gaussian approximation to 

    

! 

" ij, t #1$µd , where the   

! 

µ
d
 sequence contains probabilities 

for discrete diameter increment bins.  The contribution of diameter is omitted, because its effect 
on survival probability is small relative to that of growth rate.  Then the conditional distribution 
for bin k in the sequence of µd estimates is 
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! 

µd|zij , t+1
" E ln d zij,t+1( ) = ln dk p ln dk z

ij,t+1

# 
$ 
% & 

' 
( 

k
)  

and 

    

! 

Vd|zij , t+1
"Var ln d zij,t+1( ) = ln dk( )

2
p ln dk zij,t+1( )k

# $ E ln d zij,t+1( )[ ]
2

 

There is a conditional mean and variance for z = 0 and z = 1.  The log growth rates are sampled 
from 
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with conditional means and variances contributed by survival are for z = 0 or z = 1, depending on 
whether or not the individual survived until the next year.  The terms in these conditionals come 
from the state space model, observations, and survival, respectively. 

Survival 
Because slow growth is associated with death, the observations of growth rate below a 

certain threshold are rarely observed.  This lack of slow growth observations results from the fact 
that mortality risk increases sharply at slow growth rates.  The survival model includes a 
sequence of µd values (probabilities) bounded by one and zero, declining monotonically with 
growth rate, and a sequence of µD increasing monotonically with tree diameter. In addition to 
monotonicity, there is an informative prior for values within the sequence µD, which was 
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This prior assures essentially zero values for juvenile trees (bins 1, 2, 3), but is non-informative 
(but monotonically increasing) for large trees.  Thus, diameter only affects survival of large 
trees, but the prior has impact for species lacking large individuals.  Although small trees grow 
slowly and thus are at higher mortality risk, this is a growth effect, not a diameter effect.  This 
informative prior allows us to separate the effect of slow growth from that of large size, which 
could indicate senescence.  The monotonicity constraints on survival model were imposed by a 
Metropolis step, where proposed values have this characteristic.  The full sequence of 
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µd{ }, µD{ }  are proposed together, subject to the monotonicity constraint, and accepted as a 
block.  To mix over the unknown year of death for the interval-censored data, a year of death 
was selected at random from the death interval (ranging in width from one to four years), and 
taken to be the currently imputed year of death. 

Dispersal parameters 
The parameters u and c were updated with a Metropolis step, both proposed from a normal 
distribution truncated at zero. 

Fecundity, maturation, gender 
Due to their conditional dependence structure, fecundity, maturation, and (for dioecious species) 
gender are sampled together in a Metropolis step.  Here we describe sampling.  The basic 
factoring used for maturation, gender, and fecundity is 
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where qij and hij represent the history of observations on individual ij, including present (t), past 
(before t) and future (after t).  The first factor on the RHS is the likelihood for seed trap data, 
indicating that all seed traps on plot j in year t conditionally depend on every tree i on plot j.  The 
second factor on the RHS is the probability of being mature (Q = 1), female (H = 1), and having 
fecundity f.  
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For monoecious species, we use a Metropolis step where maturation status and fecundity 
are jointly proposed and rejected for all trees in a given stand j in a given year t. For dioecious 
species we must further sample gender.  Because gender applies to an individual across all years, 
dioecious species are sampled in a different way and are discussed after monoecious species.  
The blocking differs between these two data types, which we describe here. 

Efficient Gibbs sampling requires blocking of variables to facilitate mixing, which is 
challenging given the ways in which latent variables are linked with the unknown year in which 
an individual becomes mature τij.  These relationships include: 

i) the Qij,t and fij,t are inherently linked, by virtue of the fact that non-zero fecundity is 
defined only for mature individuals,

    

! 

fij,t Qij,t = 0( ) = 0 , and 
    

! 

fij,t Qij,t =1( ) > 0 . 

ii) maturation statuses for an individual over time are mutually dependent according to the 
one-way transition to maturity in year τij.  

iii) gender is considered to be fixed, and  
iv) seed trap data conditionally depend on all trees in the plot in a given year. 

In light of the conditional relationships involving status and seed production, the choices for 
blocking are to 1) sample individually every year for every tree (conditioned on other trees for 
that year and other years for that individual), 2) sample as a block all individuals within a plot for 
a given year, and 3) sample as a block all trees and years within a plot.  The first option has the 
advantage that high acceptance rates can be achieved, but is computationally slow, entailing 
loops over plots, individuals, and years, e.g., a Metropolis step for every tree-year in the data set.  

The third option can result in a high rejection rate, each proposal consisting of 
    

! 

Tij " tij( )
i=1

n j

# values. 

The binary nature of Q and H proposals can make acceptance rates low. Nonetheless, because 
gender Hij applies to an individual across all years, we use a modification of option 3 for 
dioecious species.  We begin with a description for monoecious species, followed by the 
description for dioecious species.   

Monoecious species--We use the second option for monoecious species, blocking on 
time and modeling each year successively.  The factoring is 
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p f j,t ,Qj,t q j,t , x j,t"1, x j,t ,Qj,t"1,Qj,t+1, s j,t( ) = 
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p Qj,t , f j,t , q j,t , x j,t"1,Qj,t"1,Qj,t+1, x j,t( )  

We propose all values of {Q, f}j,t together and accept or reject them as a block.  The Markov 
transition probabilities from t to t+1 are conditioned on observations of status qj,t, and they must 
be combined with probabilities for fecundities and seed trap data.  The transition from immature 
to mature is a hidden Markov process, but only for tree-years in which status is unknown, which 
is the case after the last year in which immaturity is certain, and before reproduction has been 
observed. If the status is known through past observations (if previously observed to be mature, 
then still mature), a current observation (mature or immature), or future observations (if later 
known to be immature, then immature now), then status Qij,t is known.  These relationships also 
apply to imputed statuses. If unknown, status must be modeled as the conditional probability of 
being in state Qij,t  given Qij,t-1 = 0 and Qij,t+1 = 1.  These probabilities involve the age-specific 
rates of making the transition from immature to mature states and can be derived from the 
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cumulative logit probability of being mature given diameter Dij,t and canopy status λij,t . Because 
blocking is year-by-year, we condition the transition probability on both the foregoing and the 
following years. Then the trivial probabilities are
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p Qij,t =1Qij,t"1( ) =1 and 
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p Qij, t =1Qij, t +1
= 0( ) = 0 .  For failure to recognize the reproductive state, we need the additional 

factor 
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For Gibbs sampling, we need the year-by-year transition probabilities from immature to mature 
between t-1 and t given that the transition was made between t -1 and t +1. Let δij,t be the 
probability of being in the mature state conditional on states in years t-1, t+1, and on 
observations.  Ignoring observations for the moment, we have 
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Because λij,t changes much slower than Dij,t, we do not include it in the chain rule calculation for 
the derivative.  Because dt is always equal to 1 yr, we hereafter omit it. 

Observations change the transition probabilities.  Thus far, the equation for δij,t describes 
the probability of transition in the absence of an observation.  If there is an observation in yr t 
and it is 'uncertain' (qij,t = 0: see Table 7), then the observer did not identify the tree as mature, 
and the probability becomes 
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"ij,t = Pr Qij,t =1Qij,t#1 = 0,Qij,t+1 =1,qij,t = 0( )  
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=
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For the first study year, in the absence of an observation (maturation statuses were not obtained 
on all individuals the first year of the study), we have 

    

! 

"ij,t = p Qij,t =1Qij,t+1 =1( )
    

! 

=
"ij,t

"ij,t + d"ij,t+1

 

If there was an observation and that observation was qij,t = 0 (Table 4), this becomes 
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=
"ij,t (1# v)

"ij,t (1# v) + d"ij,t+1

 

For the last observation year, absent observation, 
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"ij,T = p Qij,T =1Qij,T #1 = 0( )    

! 

= d"ij,T 1#"ij,T( )  

If there was an observation, we have 

    

! 

"ij,T     

! 

= d"ij,T (1# v) 1#"ij,T( )  

The Metropolis steps entail a loop over years, at each time step proposing values for Qt 
and ft, with the constraints on Q discussed above and fij,t = 0 for all imputed Qij,t = 0.  Those 
mature at t-1 remain mature.  Those immature at t+1 remain immature.  Those of known status 
retain that status. For those imputed to be immature at t-1 and mature at t+1 and of unknown 
status, candidate values come from 

    

! 

Qij,t
*

~ Bernoulli 0.5( ) . For individuals proposed to be mature 

and previously imputed to be mature, we propose from 
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ln fij,t
*

~ N ln fij,t
(g)

,0.1
" 
# 
$ 

% 
& 
' , where (g) 

denotes the current Gibbs step, prior to updating.  For individuals previously imputed to be 
immature, we propose in three ways, implemented randomly with equal probability.  Let f be the 
vector of log fecundity values selected for updating.  We draw from 

      

! 

f ~ N " f ,0.1# I( ) where the 
mean vector assumes one of three forms:  

1) Previous value: f' is a vector of auxiliary variables having values retained from 
the most recent iteration of the sampler in which Qij,t = 1. 

2) Match process support: 
    

! 

" f = µ
f d

 is the vector of conditional means from the 
state space model, i.e., the value finding most support from the multivariate 
regression, based on current parameter values.  It is given by eqn 8b. 

3) Match likelihood support from seed data: Conditional on currently imputed 
values for individuals not being updated on plot j at time t ej,t, having dispersal 
matrix Ej,t solve for mean values finding most support from seed data from eqn 

2, 
      

! 

" f j, t = " F j, t
T
" F j, t( )

#1

" F j, t
T

A j

T
A j( )

#1

A j

T
g j, t # 1mcBj #E j, te j, t

$ 

% & 
' 

( ) 
, where F'j,t is the 

dispersal matrix for individuals to be updated.  
The acceptance criterion involves the products from expressions given above, 

    

! 

p Qj, t , f j, t Qj, t"1
,Qj, t +1

,qj, t , sj, t ,µ j, t

f d

,Vj, t

f d# 
$ 
% 

& 
' 
( ) 

    

! 

1"#ij, t( )
1"Qij , t

#ij, t N ln f ij, t µij, t

f d

,Vij, t

f d$ 

% 
& 

' 

( 
) 

* 

+ 
, 

- 

. 
/ 

Qij , t

i

0
    

! 

Pois sjk , t gijk , t( )
k =1

"  
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Note that all individuals imputed to be mature have a conditional density associated with the 
state-space model.  The δij,t are different for each individual and year, as discussed above.  All 
trees contribute to the likelihood for the seed data for plot j in yr t in that by producing seed or 
not, they affect the parameters of the Poisson sampling distribution for seed.  Of course, the set 
of proposals is accepted or rejected as a block.  The sampler is more efficient than it appears, 
because we propose statuses and fecundities for all plots simultaneously, and accept/reject them 
on a plot by plot basis, without actually looping over plots.  Once states are updated for time t, 
we move to t+1.  The acceptance rate for typical species is 15 - 50%, when proposals 1 and 2 
apply and 8 to 45% when proposal 3 applies.  We repeated sampling two times for each iteration 
of the MCMC. 

Dioecious species--For dioecious species gender is unchanging over time, so we evaluate 
the full history of observations for each tree, but still avoiding loops over individual trees.  It is 
efficient to factor the conditional somewhat differently, taking together all trees on plot j over all 
years, 

    

! 

p f j ,Qj , H j q j ,hj , X j , s j( )" 

    

! 

p s j f j ,Qj , H j( )
    

! 

p f j ,Qj , H j q j ,hj , X j( ) 

Because maturation is no longer modeled year-by-year, we require the probability for a history 
of maturation status, conditioned on observations obtained sporadically over individuals and 
years.  

Let τij be the year in which an individual becomes mature, 
    

! 

"ij

0
= max t qij,t = #1( )  be the 

last year an individual is known to have been immature, and 
    

! 

"ij
1 = min t qij,t =1( )  be the first year 

an individual is known to have been mature.  Thus, we have the constraint
    

! 

"ij
0
# "ij # "ij

1 .  The 
probability assigned to an individual that became mature in year t is, 

    

! 

"ij = p #ij = t #ij

0
< #ij < #ij

1$ 

% 
& 

' 

( 
)  = 

    

! 

d"ij,t "
ij,# ij

1 $"
ij,# ij

0

% 

& 
' 

( 

) 
*  

 

    

! 

= "1

#
dij,t

#ij,t 1$#ij,t( )

#
ij,% ij

1 $#
ij,% ij

0

& 

' 
( 

) 

* 
+ 

 

For individuals imputed to be still immature at the end of the observation period at Tij, the 
probability is 

  

! 

"ij =

    

! 

p "ij > Tij "ij > "ij
0# 

$ 
% 

& 

' 
( =1) p "ij * Tij "ij > "ij

0# 

$ 
% 

& 

' 
( =

1)+Tij

1)+
ij," ij

0

 

For individuals imputed to be already mature before observations began at tij, the probability is  

  

! 

"ij =

    

! 

p "ij < tij "ij < "ij

1# 

$ 
% 

& 

' 
( =

)tij

)
ij," ij

1

 

We now have a probability for the history of an individual that became mature at time τij or 
remained immature throughout.  Our prior specification allows for a minimum and maximum 
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maturation diameter, in which case 
    

! 

"ij,#
ij

0  and 
    

! 

"ij,#
ij

1  are the values of θ taken at these prior 
maturation diameter values.   

The probability for maturation is combined with observations of status between those 
years that established it as immature and mature and for gender.  Thus far, we have considered 
observations that definitively establish maturity or immaturity (qij,t = -1 or 1 in Table 4).  For qij,t 
= 0, status is uncertain.   Detection probabilities are 

    

! 

p qij,t =1Qij,t = 0( ) = 0 and 

    

! 

p qij,t =1Qij,t =1( ) = v . The individual has unknown gender if the gender is not observed, the 
observation is uncertain, or if flowers are observed but not identified to sex, and no observation 
is available from the fruiting season (Table 4).  Considering both observations and gender, the 
probability for individual ij becomes 

    

! 

p "ij , Hij "ij
0

< "ij < "ij
1

,qij = 0
# 

$ 
% 

& 

' 
( 
    

! 

= "ij 1# v( )
nij

v

1#$( )
1#H ij

$
H ij  

where 
    

! 

nij

v
= 1" qij,t( )

# ij

# ij
1

$  is defined to be the number of times mature status was 'undetected' 

during the interval 
    

! 

"ij ,"ij

1# 
$ 
% & 

' 
( , i.e., the number of times that an individual imputed to be mature in 

year τij was not identified as such. If gender is known, the third factor disappears, 

    

! 

p "ij "ij

0
< "ij < "ij

1
,qij = 0

# 

$ 
% 

& 

' 
( 
    

! 

= "ij 1# v( )
nij

v

.   

The full reproductive history on all individuals has conditional probability  
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% 
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! 
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+ 
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, 
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! 

" Pois sjk , t gijk , t( )
k

#
t

#  

For each individual a maturation diameter is proposed from a uniform distribution 

    

! 

"ij ~ unif tij
0
,tij

1# 
$ 
% & 

' 
( 

tij
0

= max tij
min

,"ij
0# 

$ 
% & 

' 
( 

tij
1

= min tij
max

,"ij
1# 

$ 
% & 

' 
( 

 

The bounds for minimum and maximum maturation diameters are not sooner than the first year 
in which ij reached the minimum prior diameter for maturation 

    

! 

tij
min

= max t Dij,t > Dmin( )( ) or it 

was last known to be immature 
    

! 

"ij

0  and not later than the last year in which ij had not yet reached 
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the prior diameter for certain maturation 
    

! 

tij
max

= min t Dij,t < Dmax( )( )  or it was known to be 

mature 
    

! 

"ij

1 . There are prior minimum and maximum diameters, which differ among species. The 
fecundity for an individual proposed to be immature is zero.  For individuals currently imputed 
to be mature, the proposed fecundity is a truncated normal on 

    

! 

f
(1)

, f
(2)( )  centered on the current 

estimate.  The conditional densities are then the product of Poisson seed data, Gaussian 
fecundity, and the probability associated with maturation in yr t.  Because the probability of seed 
data conditionally depends on all trees in the stand in all years, the set  containing {fj, Qj, Hj} is 
accepted or rejected as a block. 

Recognition success is sampled from the conditional posterior 

    

! 

Bin qij,tij,t
" Qij,tij,t

" ,v
# 

$ 
% 

& 

' 
( Be v v1,v2( ) = Be v v1 + qij,tij,t

" ,v2 + 1) qij,t( )Qij,tij,t
"

# 

$ 
% 

& 

' 
(  

For female fraction we sample from the conditional posterior 

    

! 

Bin Hijij
" nIJ ,#
$ 
% 
& 

' 
( 
) Be # h1,h2( ) = Be # h1 + Hijij

" ,h2 + 1* Hij( )
ij

"
$ 

% 
& 

' 

( 
)  

Prior values are
    

! 

h1 = h2 = 4 , which has a mean of 0.5 and is dominated by the data. 
Parameters for the logit function of maturation eqn 1 are sampled with Metropolis step.  

Conditionally we have 

    

! 

" # ij( )N $
%

b
%
,V

%( )
i, j

&   

where the first product is the probability associated with maturation years, which depend on βθ, 
and the truncated normal prior.  A proposal is generated from a multivariate normal with initial 
proposal covariance matrix (MTM)-1, where M is the design matrix for the logit in eqn 7, 

    

! 

logit "( ) = M#
" .  Sampling is adaptive, with M being updated several times in the MCMC from 

the covariance matrix of previous βθ values. 
Parameters for the seed data model are sampled in a single Metropolis step.  

Conditionally,  

    

! 

Pois sjk , t gijk , t( )
k =1

"
j

"
t

"
    

! 

N u u0,Vu( )N c c0,Vc( )I u,c > 0( ) 

Values are proposed from a truncated normal distribution.  In the case of missing data, seed 
counts were replaced with the currently imputed seed value.   

Imputation of missing data involved a Metropolis step with proposals of plus or minus 1 
from the current value with probability 0.5.  The conditional posterior includes a Poisson prior 
with a mean density as discussed in Section 4 multiplied by Poisson density for sample jk,t.  
Proposals were accepted as a block for sj,t. 

A Metropolis step is used to simultaneously update all of the diameter growth and 
diameter bins for the non-parametric survival relationship.  The growth rates and diameters of all 
individuals are binned in the sequences µd and µD are for the all years.  For diameter increment 
there are 31 bins equally spaced with width 0.1 on the log10 scale.  For diameter there are six 
bins, also equally spaced on the log10 scale, with the maximum value chosen to exceed that 
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largest diameter in the data set. Survival from year t to t+1 is the event zij,t = 1 and death in the 
subsequent year is zij,t = 0.  At each Gibbs step new sequences of µd and µD are proposed each 
being Gaussian and centered on the currently imputed values, but truncated midway between the 
current values.  For diameter increment the proposal density is 

    

! 

µ
d

*
~ N µ

d
,V( )I µ

d"1 "µ
d( ) / 2, µ

d
"µ

d +1( ) / 2( )  

where V is a small value (0.1 in this case).  In other words, if the currently imputed value for µd,k 
was 0.5 and those for bins k-1 and k+1 were 0.6 and 0.48, then the proposal would come from 
the normal centered at 0.5, truncated at 0.55 and 0.49.  This procedure allows for any shape 
subject to monotonic decline.  The proposals for the diameter values are done in the same way, 
with the constraint being monotonic increase and with an informative prior 

    

! 

Be ak ,bk( ) . All 
values (both growth rate and diameter) are proposed together and accepted as a block. 

 
Fig. A1. The initial 50,0000 MCMC steps for diameter growth (above) and fecundity (below) random effects, 
90% thinned.  The five individuals were selected at random from Ulmus alata, also chosen arbitrarily.   Maps and 
distance relationships are shown in Figs. A2 and A3, respectively. 

POSTERIOR SIMULATION  

Due to the size of the model, efforts were made to optimize code, written in R.  Despite 
the large number of years across many individuals within multiple plots, the main Gibbs loop 
contains only three loops over years (including one to update maturation/fecundity, one for 
missing seed data, and another for dispersal and Poisson parameters), and no loops over 
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individuals or plots.  Data structures that include pointer arrays were used to rebuild (reorder and 
restack) matrices of state variables based on the changing gender and maturation statuses of trees 
and tree-years and imputed values for variables. 

 
Fig. A2. Random effects for diameter growth (a) and fecundity (b) for Ulmus in stand DB showing lack of spatial 
coherence.  Positive and negative values are red and blue, respectively, with symbol size scaled by magnitude of the 
effect.  For fecundity, black dots indicate immature individuals.  Differences are plotted against distance in Fig. 
A3. 

We initialize fecundity using an approximation from equation 2, which has the solution 

      

! 

f j, t = Fj, t
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 A.13 

This solution requires the prior mean value for dispersal parameter u, and it is available only if nj 
> mj. We initially set all tree years for which an individual is known mature, based on 
observations (Table 7), or is unknown but exceeds the diameter at which p(Qij,t) > 0.5, or 
diameter 

    

! 

Dij, t > "#
0

$
#

1

$ , to Qij,t = 1.  Prior values are used for 
  

! 

"
0

#
,"

1

#( ). If nj < mj, then we first 

select the mj trees closest to seed traps and solved for their fecundities f'j,t.  If any of the solutions 
in f'j,t exceeded f(2)/2 or were less than 2 × f(1), their values are set to these limits.  We then solve 
for the remaining fecundities f''j,t conditioned on f'j,t, with kernel matrix F''j,t,      

      

! 

" " f j, t = " " F j, t
T
" " F j, t( )

#1
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T
A j( )

#1
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T
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$ 

% & 
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 A.14 

This approach is sensible, because trees closest to seed traps are most strongly constrained by 
seed counts and thus contribute strongly to dispersal estimates, which contributes in turn to 
estimates of others.  This approach was faster than an Expectation-Maximization approach, but 
EM would have also work here.   

Extensive experiments with different initial conditions were the basis for development of 
adaptive sampling and initializations discussed above, including thousands of experiments with 
all species.  Like any large model, sensible initialization is required, but experiments with the 
model, including diagnostics summarized in the text, confirmed that it converges to the posterior.  
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Although many initializations were used in experiments, production runs came from single long 
chains.  Convergence was achieved with 10,000 iterations for species with moderate numbers of 
individuals, but required up to 50,000 iterations for trees with many individuals.  There are a 
large number of parameters, not all of which could be sampled efficiently.  The slowest updating 
was obtained for fecundities, one of two Metropolis steps, due to the discrete nature of Qij,t and 
Hij, and the blocking over all tree-years within a plot.  We selected for updating at random 30% 
of the trees for a given iteration and embedded 5 such iterations within each Gibbs step. A 
counter had been inserted into the submodel for monoecious species for development purposes, 
with results shown in Table A1.  These rates are the range that is expected to optimize mixing.  
No such counter had been included in the submodel for dioecious species. 

 
Fig. A3. Pairwise differences between random individual effects plotted against the distances between 
individuals.  Diameter growth and fecundity are shown in blue and red, respectively.   
 

Execution times for the slowest fecundity submodel in Table A1 are shown for a Dell 
T5500 workstation (Quad Core Xeon processor E5504 series, 4×2 GHz). CPU time (actual time 
the processor is engaged), were always < 0.02 s, but clock time was > 3 s for Acer, which 
included 80,930 tree-years.  Production runs were completed on the Duke University cluster with 
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faster processors than used for experiments reported in Table A1, depending on the specific 
node. 

The rapid convergence was achieved due to an informed approach to initialization, the 
fact that proposals were efficient, and random effects were marginalized.  At the initialization 
stage, we have approximate fecundities for tree-years.  There is still substantial mixing required, 
because we cannot know which individuals are mature and female.  Nonetheless, starting with 
the majority of individuals close to the posterior mean speeds convergence for remaining 
individuals.   

 
Table A1. Acceptance rates for three types of proposals in the Metropolis step and execution time for the fecundity 
submodel, the rate-limiting step in the algorithm. 
 

Acceptance fractions Execution (s)  
Genus Auxiliary 

variable 
State-space 

model 
Seed data 
likelihood 

 
Total 

 
CPU time 

 
Elapsed time 

acer - - - - 0.021 3.562 

betula 0.433 0.431 0.294 0.386 0 0.39 

carpinus 0.511 0.491 0.328 0.444 0 0.291 

carya 0.411 0.408 0.323 0.38 0 0.781 

cercis 0.642 0.637 0.268 0.515 0 0.276 

cornus 0.314 0.313 0.264 0.297 0 0.949 

fagus 0.653 0.652 0.619 0.642 0 0.019 

fram - - - - 0 0.59 

list 0.214 0.2 0.119 0.178 0.001 0.517 

litu 0.454 0.452 0.292 0.4 0 0.976 

nyssa - - - - 0 0.783 

pinus 0.201 0.199 0.134 0.178 0 0.762 

quercus 0.261 0.26 0.195 0.238 0 2.172 

robinia 0.46 0.46 0.44 0.453 0 0.164 

tilia 0.605 0.604 0.357 0.522 0 0.17 

tsuga 0.704 0.704 0.59 0.666 0 0.316 

ulmus 0.387 0.374 0.148 0.303 0 0.415 
 

Fecundities were sampled efficiently because the proposal strategy included alternately 
matching proposals with the likelihood for seed data, the state-space model, or an auxiliary 
variable, being the most recent estimate.  Had we not included this proposal, it would have been 
difficult to accept proposed fecundities for trees previously immature.  The burst of new seed 
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from these individuals would be unlikely, in terms of seed data, unless balanced by a proposed 
reduction by other trees. This algorithm results in high acceptance rates for maturation status and 
effective mixing.  Alternating proposals in this fashion minimizes the probability that the 
algorithm becomes trapped in one part of the posterior. 

If they cannot be marginalized out, random effects substantially slow convergence.  The 
marginalization in eqn A.12 means that fixed effects do not depend on convergence of random 
effects.  Rapid convergence of fixed effects, in turn, speeds convergence of random effects.  
Sample chains show this rapid convergence (Fig. A1). 

Burnin steps were discarded, followed by >100,000 iterations that were retained for 
analysis, thinned to reduce storage overhead.  We inspected Gibbs chains for all parameters as 
well as for samples of individual effects (e.g., Fig A1). To help evaluate results we compared 
priors and posteriors, we considered predictive capacity, in terms of data used to the fit model, 
and we compared predictive intervals from the model with estimates of latent states that could 
not be directly observed (see main text). 

Analysis of the random effects showed lack of spatial coherence, thus obviating need for 
a spatial prior.  Maps of random effects (Fig. A2) showed no tendency for spatial clustering of 
these effects.  Plots of pairwise differences in random effects summarize the evidence for lack of 
spatial coherence (Fig. A3).  
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