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Abstract.   Probabilistic forecasts of species distribution and abundance require models that 
accommodate the range of ecological data, including a joint distribution of multiple species 
based on combinations of continuous and discrete observations, mostly zeros. We develop a 
generalized joint attribute model (GJAM), a probabilistic framework that readily applies to 
data that are combinations of presence-absence, ordinal, continuous, discrete, composition, 
zero-inflated, and censored. It does so as a joint distribution over all species providing inference 
on sensitivity to input variables, correlations between species on the data scale, prediction, 
sensitivity analysis, definition of community structure, and missing data imputation. GJAM 
applications illustrate flexibility to the range of species-abundance data. Applications to forest 
inventories demonstrate species relationships responding as a community to environmental 
variables. It shows that the environment can be inverse predicted from the joint distribution of 
species. Application to microbiome data demonstrates how inverse prediction in the GJAM 
framework accelerates variable selection, by isolating effects of each input variable’s influence 
across all species.

Key words:   categorical data; community structure; composition data; generalized joint attribute model; 
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Introduction

Efforts to explain and predict biodiversity (e.g., Iverson 
and Prasad 1998, Ferrier et al. 2002, Guisan and Thuiller 
2005, Gelfand et al. 2006, Araujo and Luoto 2007, Botkin 
et  al. 2007, Chakraborty et  al. 2010, Benito et  al. 2013, 
Booth et al. 2014) confront three challenges summarized in 
our title. First, median-zero refers to the fact that most of 
the values in species-abundance data sets are typically zero 
(Fig. 1b, c). Second, species are not independent and thus 
models must be multivariate. Finally, data may be con-
tinuous (density, basal area, biomass), discrete (presence/
absence, counts), censored (detection limits, intervals, 
maximum values), composition (proportional of a total), 
nominal, and ordinal; such multifarious combinations of 
observations are not described by standard distributions. 
We describe generalized joint attribute modeling (GJAM) 
to address this challenge, providing a common framework 
for synthesis of ecological attribute and abundance data, 
both for estimating responses to the environmental and for 
prediction.

Generalized joint attribute modeling is motivated by the 
difficulties faced by all species distribution models (SDMs), 
including joint species distributions models (JSDMs; 

Clark et al. 2014, Pollock et al. 2014) and predictive trait 
models (PTMs; Clark 2016b). SDMs and JSDMs omit 
much of the information contained in field data, where 
abundances and attributes are often documented in multi-
farious ways. Some species groups are counted. Those not 
easily measured are recorded in ordinal categories, such as 
“rare”, “moderate”, and “abundant”. Presence-absence of 
a predator, pathogen, or mutualist might be recorded. 
Attributes such as body condition, infection status, and 
herbivore damage can be included. Even condition of a 
sample plot can be relevant. For example, grazer abun-
dance might be observed together with evidence for plot-
level grazing damage, as ordinal scores (“none” to 
“severe”) or categorical (nominal) categories. How would 
a model combine insect counts of multiple species from 
pitfall traps with herbaceous cover? Or fishing returns with 
presence-absence by-catch of threatened species? Or 
microbiome data with host condition and abundance 
(Fig. 1a, b)? All of these variables are responses, not pre-
dictors–they are just as random as abundance values, both 
affecting and responding to other variables. All are 
recorded on different scales. We introduce the term GJAM 
for the model that accommodates these attributes jointly.

The challenges of multifarious data may account for 
two tendencies in the SDM literature, (1) to model on a 
transformed scale that is different from the data (e.g., a 
non-linear link function) and (2) to model something 
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other than what was observed, most often substituting 
presence-absence for observations that come from many 
scales. Although several JSDMs apply to abundance data 
(Latimer et al. 2009, Thorson et al. 2015), and one applies 
to combined presence-absence and continuous abun-
dance data (Clark et  al. 2014), most assume presence-
absence (Finley et  al. 2009, Ovaskainen et  al. 2010, 
Ovaskainen and Soininen 2011, Pollock et  al. 2014, 
Harris 2015), even when data are not collected this way. 
The question becomes, do these modeling decisions affect 
inference and prediction?

First, the covariance matrix estimated in a hierarchical 
JSDM with non-linear link functions (Finley et al. 2009, 
Ovaskainen et al. 2010, Ovaskainen and Soininen 2011, 
Pollock et al. 2014, Thorson et al. 2015) is not estimated 
on the data scale and thus is not to be interpreted as a 
covariance between species abundances. When response 
variables are continuous and covary, their dependence 
structure is most efficiently modeled with a covariance 
matrix. However, many ecological data types are discrete 
(counts, ordinal scores, zeros, censored intervals). A 
covariance matrix can still be used in models of such data 
if it is introduced at a first stage of a hierarchical model, 
provided there is a non-linear link function to data. For 
example, a generalized linear model (GLM) can specify a 
Poisson distribution for counts, yis ∼Poi(λis) of species s 
in observation i. This model for discrete counts does not 
admit a covariance matrix. The intensity λis is continuous, 
but unless there is a scale transformation, models for it 
too do not admit a covariance, because λ is constrained 
to positive values. The log transformation, or link 
function, introduces a new issue that is not widely appre-
ciated, the fact that covariance cannot be interpreted on 
the scale of the observations yis. Whereas intensity λis has 
the transparent interpretation on the same scale as the 
counts themselves, the covariance on the log scale does 
not (Fig. 2a). Then too, the explanatory variables sub-
jected to non-linear transformation also no longer have 

the transparent interpretations of “main effect” and 
“interaction”. On the transformed scale, all variables are 
part of interactions imposed by the form of the link 
function. If a sample contained multifarious data, com-
plications would compound as each type of observation 
might require a different link function to allow for the 
second-stage continuous model that includes covariance. 
If it is already hard to attach meaning to covariance on 
the log scale, how can we interpret covariance structure 
where some responses are log scale and others logit scale 
(Fig. 2b)?

Non-linear link functions are generally not motivated 
by theory. A log link might be used because it accommo-
dates an increase in variance with abundance. Mean–var-
iance relationships are important to consider, but model 
adequacy is generally evaluated on the basis of residual 
errors or data prediction (e.g., Ver Hoef and Boveng 
2007, Warton et  al. 2012, Hui et  al. 2015) rather than 
theory. Non-linear link functions can arise naturally 
when a likelihood function is written in exponential 
family form. However, models on the observation scale 
could also be valuable for many applications, particu-
larly when observations on different scales are combined. 
They have transparent interpretation.

The second tendency, to substitute presence-absence 
models for data collected in other ways has not been eval-
uated for a joint distribution of species. When a study 
changes the observations, the loss of information (e.g., 
when abundance on many scales is reduced to presence) 
should affect estimates. The question is, how much?

If collapsing abundance to presence-absence or cha
nging the data in other ways might come at a cost, why is 
it so often done? The consequences are not discussed in 
the literature and may be unrecognized. Without a GJAM, 
the effects demonstrated here would be hard to quantify, 
due to the different link functions used for presence-
absence and abundance data. There has been little 
attention to the challenge posed by multifarious data.

Fig. 1.  Zero dominance in three data types. (a) Seedling hosts (n = 762) can be in “morbid” or “healthy” states, scored as 0 and 
1. (b) Composition count data for their endophytic microbiome (S = 175 operational taxonomic units [OTUs] occurred in at least 100 
observations) are 96% zeros. (c) Continuous abundance with point mass at zero; the biomass taken over S = 98 species on n = 1617 
1-ha aggregate plots is 82% zeros. (panels a and b from M. H. Hersh, S. Benetiz, R. Vilgalys, and J. S. Clark, unpublished manuscript)
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The problem of zeros in species abundance data has 
been discussed in the context of univariate models (e.g., 
Martin et  al. 2005). For count data, Poisson, negative 
binomial, and even hyper-zero-inflated models perform 
poorly when the fraction of zeros approaches 50% (Ghosh 
et al. 2012, Clark and Gelfand 2016). In many ecological 
data sets, zeros can often exceed >90% of all observations 
(Fig.  1), and the traditional solutions are limited. And 
again, presence-absence models cannot accommodate 
any species that are present in all samples. In joint models 
the challenge of overwhelming zeros must be confronted 
with models that also admit multifarious data.

The need for a model that allows flexibility for con-
tinuous, discrete, ordinal, and composition data, with 
censoring and zero inflation motivates a GJAM. We 
describe a synthetic framework for observations of many 
types, modeling the data on the scale they are collected, 
imposing a reference scale only for data that have none 
(e.g., presence-absence). The coefficients and species cor-
relations in GJAM are interpretable on the observation 
scale.

An important extension of GJAM involves an 
expanded role for prediction. Objectives of SDM studies 
most often concern community-level variables, such as 
species richness, diversity, or biomass (Ferrier et al. 2002, 
Elith et al. 2006, Baselga and Araujo 2010, Guisan and 
Rahbek 2011, Mokany and Ferrier 2011, Mokany et al. 
2011, 2012). Formal predictive modeling is not possible 
from SDMs fitted to species independently, requiring an 
informal approach that omits relationships between 
species (e.g. Calabrese et al. 2014). Beyond showing the 

value of in-sample and out-of-sample prediction to verify 
that GJAM applies to the many data types and species 
responses jointly, we go further. Inverse prediction pro-
vides a composite estimate of environmental importance 
for the entire community (Clark et  al. 2011, 2013). It 
opens new options for predicting the environment from 
species, because it combines information from all species 
in a synthetic prediction with full uncertainty. Predictive 
distributions allow us to explore community structure on 
the basis of responses to environmental predictors, rather 
than presence-absence or abundance patterns. We first 
develop the model, including motivation, framework, 
and its application to multifarious data. We then discuss 
the role of prediction in GJAM. Finally we provide 
applications.

Model Development

Consider species abundance data where adults are 
recorded on a continuous scale (e.g., basal area) and seed-
lings of the same or different species are recorded as dis-
crete counts. We refer to these data types are continuous 
abundance (CA) and discrete abundance (DA), respectively. 
We wish to quantify their responses not only to environ-
mental variables, but also their residual relationships to 
each other. For example, do they tend to covary, beyond 
what can be explained by environmental variables? Any 
transformations we might impose distort the scales and 
thus complicate interpretation. However, transforming 
data to different scales is not the only option. An alter-
native is available where discrete data are viewed as 

Fig. 2.  A comparison of correlation values on the observation scale Y vs. a latent variable W at the first stage of a hierarchical 
model with (a) log link, Y = eW, and (b) multivariate logit link, as used for composition data, Y
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approximate (aggregated) versions of continuous data. 
This assumption is often implicit, as when counts (discrete) 
are used to model density (continuous) in the Poisson 
example above: yis has the same scale as λis, but one is a 
discrete count, the other a continuous intensity.

An alternative means for integrating discrete and con-
tinuous data on the observed scales makes use of cen-
soring, which affects weight of the observations and 
accommodates effort. For a specific example of sample 
weight that does not involve censoring, consider Poisson 
regression with a log link, which best predicts low values. 
The weight of an observation depends on its variance 
(e.g., Ver Hoef and Boveng 2007). Constant variance on 
the log scale places disproportionate weight on low 
values. There is nothing inherently “correct” about this 
weighting, and it could be undesirable where low values 
are sporadic and noisy relative to large values, which 
could most important for fitting and prediction. 
Censoring affects the weight of an observation in a dif-
ferent way. Censoring extends a model for continuous 
variables across censored intervals. Survival analysis is a 
familiar example that can involve left-censored, interval-
censored, or right-censored observations. Continuous 
observations are uncensored. Discrete observations are 
censored and can depend on sample effort. Intensive 
effort in survival analysis, e.g., sampling daily rather than 
weekly or monthly, decreases the duration of censored 
intervals, decreases variance, and increases the weight of 
observations (Appendix S1). We learn most about mor-
tality when all subjects die at times when sampling is fre-
quent. We learn least when all subjects die within the 
same censored interval, which is most likely when 
intervals are long.

Censoring can be used with effort for an observation to 
combine continuous and discrete variables with appro-
priate weight. In composition data, effort is the total 
number of objects observed, e.g. the reads per observation 
in microbiome data. In census-count data, effort is deter-
mined by the size of the sample, search time, or both. It is 
comparable to the offset in generalized linear models 
(GLM). We discuss how these elements contribute to the 
model framework in the section Model framework.

Model framework

Elements of the model are introduced first, followed 
immediately by a simple example demonstrating their 
relationships. We then consider applications to multiple 
data types.

A sample consists of n observations. Each observation i 
consists of two vectors, (xi,yi)

n
i=1

, where xi is a vector of pre-
dictors q = 1, …, Q, and yi is a vector of responses yis, with 
s = 1, …, S. The combinations of continuous and discrete 
measurements in yi are accommodated by locating each 
observed Y in two probability spaces, one continuous W 
and another discrete Z. In the previous example, basal area 
of trees has either zero or positive values. One way to model 
continuous data with zeros is the Tobit, introduced for 

economic data (Tobin 1958, Cameron and Trivedi 2005), 
but increasingly used in environmental applications, 
including agriculture (Bamire et  al. 2002), precipitation 
(Sahu et al. 2010), and species distributions (Clark et al. 
2014). In GJAM, the two types of observations are iden-
tified by integer labels z

is
∈{0,1}. Positive values for yis are 

assigned to a discrete interval zis  =  1. Zero values are 
assigned to the interval labeled zis = 0 (Fig. 3a). In the Tobit 
model (and GJAM) fitting relies on a latent continuous 
variable wis, which is known and equal to yis when yis > 0. 
When yis = 0, the continuous variable wis occupies the cen-
sored interval zis = 0 and is known only to be negative.

We can extend this simple structure to accommodate 
each data type (Fig. 3) as follows. To generalize, a vector 
wi ∈RS locates yi in continuous space. This continuous 
space allows for dependence between response variables 
with a covariance matrix. A second vector of integer 
values zi ∈{0,… ,K−1}S labels yi in discrete space. This 
discrete space allows for error in discrete observations, 
zero-inflation being the most common example. Each 
element of zi assigns a corresponding element of wi to an 
interval zis  =  k. The number of intervals K can differ 
between observations and species, due to different levels 
of effort Eis and to different ways of observing different 
species. In other words, K can have subscripts i, s, or both.

To connect continuous and discrete vectors, there is a 
set of partition points pis,k ∈P that locate the continuous 
wis within discrete intervals zis = k. For now, assume that 
the partition does not differ between observations and 
species, pis,k =pk. Interval k is bounded by two points in 
the partition (pk, pk+1]. The intervals are contiguous and 
fully partition the real line (−∞, ∞). Unless there is zero-
inflation, k = 0 has the partition (p0, p1] = (−∞, 0]. The 
last interval is (pK, ∞).

Finally, intervals are censored when observations are 
discrete; they are uncensored when observations are con-
tinuous. The set of censored intervals is , again, those 
intervals for which yis is discrete, and wis is unknown. 
Within uncensored intervals yis is continuous and, thus, 
wis is known.

For prediction, the model can be thought of like this: 
there is a vector of continuous responses wi generated 
from mean vector μi and covariance Σ (Fig. 4a). The par-
tition pis segments the continuous scale into intervals, 
some of which are censored and others not. A value of wis 
that falls within a censored interval k generates observed 
yis = zis = k. A value of wis that falls in an uncensored 
interval is assigned wis (examples in Fig. 3).

Of course, data present us with the inverse problem: 
the observed yis are continuous or discrete, with known 
or unknown partition (Fig.  4b). The discrete class 
depicted for observed yis = 3 in Fig. 4b can correspond to 
a continuous wis anywhere within the shaded interval on 
the W axis. Depending on how the data are observed, we 
must impute at least the elements of n × S matrix W that 
lie within censored intervals. Unknown elements of 
Z  and P will also be imputed in order to estimate 
parameters.
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Before proceeding further, consider again the biomass 
example in Fig. 1c for 98 tree species on forest inventory 
plots. Together, discrete zeros and continuous positive 
values define the K = 2 intervals, indexed as k ∊ {0, 1}. 
Because the partition is the same for all observations 
and species, all elements in the partition P can be 
represented by a length-(K  +  1)  =  3 vector, 
p= (p0,p1,p2)= (−∞,0,∞) . Because k  =  0 is censored, 
and k = 1 is not, the set of censored intervals is a single 
value, ={0}. To get specific, if an observation vector 
for S = 3 species is yi = (3.7,0,12.1), then zi = (1,0,1), and 
wi = (3.7,wi2<0,12.1) .

The advantage of this framework comes from the fact 
that modeling the contrasting data types commonly col-
lected by ecologists requires no more than different com-
binations of known and unknown W,Z,P. With variable 
effort and continuous yis the wis is known and equal to yis 
(black lines in Fig. 3). When yis is discrete, the interval k 

is censored, wis is imputed (grey lines in Fig. 3), bounded 
by the two points in the partition (pis,k,pis,k+1], with the i 
and s subscripts needed when there is differing effort 
between observations, species, or both. Discrete label zis 
is imputed when there can be misclassification of discrete 
observations; zero inflation is an example (Fig. 3c). Zero 
inflation occurs when the recorded state is yis = 0, and the 
true state is zis > 0. Partition elements pis,k are imputed 
when the scale is unknown (e.g., ordinal data) (Fig. 3g).

The model combines each of the foregoing elements. 
The wis, zis, and pis,k differ for each data type and map to 
observations

where pis,k =pzis
. If there is no error in assignment of dis-

crete intervals, then zis = k (the observed label is the true 
label), and the model for wi is

(1)yis =

{

wis continuous

zis, wis ∈ (pzis
, pzis+1] discrete

Fig. 3.  Generalized joint attribute model (GJAM) includes continuous W and discrete label Z for each observed Y. When the 
observation Y (vertical axis) is continuous, it is equal to W. When the observation Y is discrete it is assigned to a discrete interval 
with label Z. The partition P has elements {pk}

K−1

k=0
 (numbers on horizontal axis) defines each interval Z in terms of W. Miss-

classification occurs when Z is wrong (e.g., zero inflation in panel c). In b) there is an upper censored values U. The portion of the 
composition link (f) beyond point a is exaggerated in the figure for clarity and discussed in the Appendix S1. E is effort (see text). 
Partition points must be inferred when the scale is unknown, in which case they have a density. For ordinal data, p0 = −∞ and p1 = 0. 
Additional partition points are estimated, each with a marginal posterior distribution in panel g.
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where the indicator function I(.) is equal to 1 when its 
argument is true and zero otherwise. The indicator

means that wis lies within the correct interval k. It applies 
only to the censored intervals, i.e., the set C. The mean 
vector �i =B�xi contains the Q × S matrix of coefficients 
B and the length-Q design vector xi. Σ is a S × S covar-
iance matrix. The partition depends on observation i if 
effort varies between observations (see Scale equivalence 
and the role of effort) and between responses s when they 
are observed on different scales. For ordinal data the par-
tition is inferred (Fig. 3g). Eq. 2 is conditional on the dis-
crete label zis = k being correct. The extension to incorrect 
zis, including zero inflation, are given in Appendix S1.

The model accommodates the diversity of observations 
contained in field data. Extending the previous example, if 
large values are censored above a threshold U, e.g., a 
detector saturates or an observer does not count higher 
than Y > U, there will be K = 3 intervals with K + 1 = 4 
elements in the sample partition p= (−∞,0,U,∞) (Fig. 3b). 
Uncensored values fall in the interval zis = 1, defined by 
0 < wis < U. An observation yi can now take values on 
[0, U]S, with point masses at both 0 and U. Between 0 and 
U values are continuous. In examples that follow, each 

ecological attribute is accommodated by different combi-
nations of known and unknown W,Z,P, with a subset of 
intervals being censored, contained in the set C.

Scale equivalence and the role of effort

Discrete data in ecology are often counts, which 
depend on the level of effort. That effort can differ 
between observations i and between species s within the 
same observation. In GJAM, effort enters through the 
partition P, thus affecting the range of values for wis in 
Eq. 2. Where effort Eis = 1 the approach imposes no scale 
difference between yi and wi, despite the fact that each 
response in yi can have different scales. Before discussing 
how effort affects different types of observations we 
address the issue of scale.

Consider again a response vector that includes density 
of seedling counts and basal area of trees, corresponding 
to columns in matrix B. Individual coefficients in this 
matrix βq,s describe the response of s to predictor q. They 
have scales of density/xq for seedlings and of basal area/xq 
for trees, where xq is the dimension for predictor q. 
Likewise covariance Σ has scales of density  ×  density 
(two seedling species), basal area × basal area (two tree 
species), and density × basal area (a tree and a seedling 
species). The coefficients and covariance have direct 
interpretation in terms of what is observed, because yis is 
on the same scale as wis. It can also be useful to compare 
species on the correlation scale, where R is the correlation 
matrix associated with Σ (Appendix S1).

Where there is no absolute scale, including presence-
absence (PA), categorical (CAT), and ordinal count (OC) 
data, one is imposed. Observations recorded as success/
failure for presence-absence or low/medium/high for ordinal 
data are not absolute scales, but they have relative scales. 
We anchor the location of the first interval at zero and 
impose a unit-variance scale (Chib and Greenberg 1998). 
In other words, the correlation R is also the covariance Σ.

Where effort E
is
≠1 there is an effect on scale, allowing 

observations from different plot areas or composition 
counts to be included in the same analysis. For discrete 
counts, large plots must contribute more weight than 
small plots. Microbiome samples with high total reads 
must contribute more than those with few reads. To 
improve on current practice (e.g., McMurdle and Holmes 
2014), effort should vary to account for the fact that 
observations with the most effort have the smallest 
variance and, thus, the largest effect on the fit.

Generalized joint attribute model achieves effort-based 
weighting through the partition. Where effort E  =  1, 
the  partition for discrete counts 0, 1, 2, … begin at 
−∞,  followed by midpoints between count values, 
p= (−∞,1∕2,3∕2,… ). For zis = k the interval is thus (pi,k, 
pi,k+1]  =  (k−1/2, k  +  1/2]. When effort varies between 
observations the partition shifts to the “effort scale”,

(2)

wi|xi,yi ∼MVN(�i,�)×

S∏

s=1

is

is =

∏
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I
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Fig.  4.  Censoring in GJAM. As a data-generating model 
(a), a realization W that lies within a censored interval is 
translated by the partition p to discrete Y. The distribution of 
data (bars at left) is induced by the latent scale and the partition, 
shown as horizontal bars. For inference (b), observed discrete Y 
takes values on the latent scale from a truncated distribution. x 
is the design vector, B is the coefficient matrix, and Σ is the 
covariance matrix.
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If observations are animals counted per hour, Ei can be 
search time. If observations are benthic organisms per 
sediment core, Ei can be core volume. If observations are 
seedlings per plot, then Ei can be the area of plot i. 
Because plots have different areas one might choose to 
model wis on a per-area scale (density) rather than a 
per-plot scale. The upper portion of Table 1 compares 
two plots having counts that result in the same density of 
100 trees per ha, but differ in plot area. The observation 
scale is counts per plot. The effort scale is area. The wide 
partition on a small 0.1-ha plot admits large variance 
around the observation of 10 trees per 0.1 ha plot; the 
partition width is 10 trees/ha. Conversely, a narrow par-
tition on a larger 1.0-ha plot constrains density to a 
narrow interval (1 tree/ha) around the observed 100 trees 
per plot.

In microbiome data effort accommodates the differing 
reads per observation. The lower portion of Table 1 com-
pares count composition data, where effort Ei is the total 
count for observation i, and wis lies on the composition 
scale: when yis is greater than zero and less than Ei, then 
wis ∊ (0, 1). Using the partition of Eq. 4 the two observa-
tions that represent the fraction 0.10 in Table 1 with dif-
ferent effort (total reads in PCR data) are responsible for 
the declining predictive coefficient of variation in Fig. 5b.

Censoring and effort combined are shown in Fig. 5. A 
simulated example is shown in Fig. 5a, where data are 
censored by the so-called “octave scale”, discrete obser-
vations recorded as (0, 1, 2, 4, 8, …) (Preston 1948, Gauch 
1982, Moore and Chapman 1986, Mueller-Dombois and 
Ellenberg 1986, Jackson and Sullivan 2009). They are 
modeled with GJAM on this observation scale, allowing 
for increasing variance with increasing mean, a rela-
tionship that can be desirable, depending on application. 
Fig. 5b exploits censoring to weight composition count 
data by effort per observation, in this case the number of 
reads from PCR data (see Synthesis of microbiome data).

Application to multifarious data

Attribute data differ only in terms of which of W,Z,P 
are observed vs. imputed. Data types are summarized 
here and compiled in Table 2.

Continuous abundance (CA) data can be concentration, 
biomass, density, basal area, leaf area, cover, and so on. 
The previous section discusses how zeros and thresholds 
in continuous data are accommodated by censoring 
(Fig. 3a, b). Where responses include zero, GJAM pro-
vides an alternative to log transformation, which can 
place disproportionate weight on low values, does not 
allow zeros, and is not interpreted on the observation 
scale. The univariate counterpart of GJAM is a Tobit 
model. Previous application to multivariate data includes 
Clark et al. (2014).

Discrete abundance (DA) data arise from counts 
(Fig.  3e). Count data are often not well described by 
standard distributions, such as the Poisson or the neg-
ative binomial, and perform poorly when zeros are 
common. The negative binomial can be more variable 
than the Poisson, but not less. When used for counts of 
multiple species, the multinomial distribution induces a 
negative covariance (e.g., Haslett et  al. 2006, Paciorek 
and McLachlan 2009, de Valpine and Harmon-Threatt 
2013, Mandal et al. 2015). When the total count in the 
multinomial distribution is related to abundance a 
separate model is needed for this total (e.g., Royle 2004). 
By treating observed counts as a censored version of true 
abundance GJAM accommodates effort (Table 2), and 
parameters can be interpreted on the observation scale or 
the effort scale.

Presence-absence (PA) data include only two cate-
gories, {0, 1} (Fig. 3d). The multivariate probit model of 
Chib and Greenberg (1998, see Pollock et al. 2014 for an 
ecological application) is a special case of GJAM for PA 
data, where both intervals are censored (Table 2). Because 
there is no scale, there is an imposed unit-variance scale.

Ordinal count (OC) data are collected where abun-
dance must be evaluated rapidly, where precise measure-
ments are difficult, or absolute scales are difficult to apply 
(Guissan and Harrell 2000). Because there is no absolute 
scale the partition must be inferred (Fig. 3g). Consider 
the ordinal scale represented by categories with these 
labels: (absent, rare, intermediate, abundant). The sample 
partition is ps = (−∞,0,ps,2,ps,3,∞), where elements 2 and 
3 are estimated (Fig. 3g). The zero anchors location, and 
unit variance imposes a scale. The model of Lawrence 

Table 1.  Effort for discrete counts.

yis = zis Ei wis k pik†

Per plot‡ Plot area Per area Interval Partition

10 0.1 ha 100 ha 10 (95, 105)
100 1.0 ha 100 ha 100 (99.5, 100.5)

Per OTU§ Total reads Fraction Interval Partition

10 100 0.1 10 (0.095, 0.105)
10,000 100,000 0.1 10,000 (0.099995, 0.100005)

† From Eq. 4.
‡ E.g., plants counted on sample plots.
§ E.g., OTUs read in microbiome data.
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et al. (2008) is a special case for ordinal counts in GJAM 
(Appendix S1).

Composition data may be continuous fractions with a 
sum-to-one constraint (fractional composition) or dis-
crete counts. Both have interpretation on the relative 
abundance [0, 1] scale, and both require point mass at zero 
and one. Due to the sum-to-one (fractional composition) 
or sum-to-Ei (count composition) constraint, there is 
information on only S−1 columns in Y. Composition-
count (CC) data are composition data reported as numbers 
of each species counted (Table 1). Composition counts are 
only meaningful in a relative sense; they provide no 

information on absolute abundance (Haslett et al. 2006, 
Paciorek and McLachlan 2009, de Valpine and Harmon-
Threatt 2013). The total count for a sample is the effort 
Ei = ∑s yis. Common examples include molecular sequence 
data (e.g., Lauber et al. 2009), paleoecology (Haslett et al. 
2006, Brewer et  al. 2012), and fungal assays (Saucedo-
Garca et al. 2014). In paleoecology, total counts can differ 
widely between observations. The number of DNA 
sequence reads in microbiome data can range over orders 
of magnitude. A practice that is widespread in the micro-
biome community rarifies count data to achieve approx-
imate equity between samples. This amounts to a massive 

Fig. 5.  Mean–variance relationships. (a) Interval censoring controls variance, which increases with partition width (shown as 
vertical dashed lines at 0, 1, 2, 4, 8, 16). The distribution of data is shown as a histogram below.  Dashed lines indicate 1:1 (diagonal) 
and mean of the observations (horizontal). Intervals are shown for the predictive mean values (b) For composition-count (microbiome) 
data partition width declines with total counts for the sample, thus decreasing variance with increasing effort. Width of boxes adjusts 
to accommodate equal numbers of observations. Symbols indicate median (horizontal line) 68% (box) and 95% (whisker).
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Table 2.  Effort effect on partition for plot data.

Data type Partition P Censored intervals C

Presence-absence, PA p= (−∞,0,∞)p {0, 1}
Continuous abundance, CA p= (−∞,0,∞) {0}
Discrete abundance, DA pi = (−∞,

1

2Ei

,
3

2Ei

,… ,
maxs (yis )−1∕2

Ei

,∞) {0, 1, …, maxs (yis)}
Ordinal counts, OC p

s
= (−∞,0,p

s,2,p
s,3,… ,∞)† {0, 1, …, K}

Categorical, CAT pis = (−∞,maxk� (wis,k� ),∞)‡ {0, 1}
Count composition, CC pi = (−∞,

1

2Ei

,
3

2Ei

,… ,1−
1

2Ei

,∞) {0, 1, …, Ei}

Fractional composition, FC pi = (−∞,0,1,∞) {0, 2}

† maxi (wis|zis = k) < ps,k < mini (wis|zis = k + 1).
‡ k′ ∊ {k|yis,k = 0}, i.e., the maximum wis,k for the unobserved levels k.
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manipulation of data that can throw away vast amounts 
of information. Alternative model-based approaches 
applied to counts are limited to single taxa (McMurdle 
and Holmes 2014). A multinomial model with first-stage 
covariance is not on the data scale. Moreover, dominance 
of zeros in microbiome data limits application of most 
approaches (Paulson et al. 2013, Li 2015).

Generalized joint attribute model accommodates the 
discrete observations and the underlying relative abun-
dance scale. A sample count can take values yis ∊ {0, 1, 2, 
…}, with Ei being the total count for sample i. The par-
tition segments the [0, 1] composition scale according to 
effort and allowing for zeros (Fig. 3f, Table 2; Appendix 
S1). Small samples have wide bins and, thus, high var-
iance and low weight (Fig. 5b).

Fractional composition (FC) data arise in many ways, 
examples including the fraction of a photoplot (Page et al. 
2008) or remotely sensed image (Cohen et al. 2003) occupied 
by each species or cover type. It can be the fraction of leaves 
lost to different types of herbivory (Silfver et al. 2015) or 
stream or foliar chemistry (Ollinger et al. 2002). The corre-
lations between responses are distorted when estimated on 
the multivariate logit scale (Fig. 2b). Still more problematic, 
the logit scale does not admit zeros, which are common in 
composition data (Aitchison 1986, Leininger et al. 2013). In 
a recent example, Leininger et  al. (2013) admit zeros by 
defining a reference response variable that does not include 
zeros. We could not obtain convergence with this model for 
data sets containing large numbers of zeros, particularly 
those where many observations are dominated by a single 
species. In GJAM, a FC observation is represented in con-
tinuous space and censored at 0 (absent species) and 1 
(monoculture) (Appendix S1).

A sample may have multiple composition groups. For 
example, Y may include both soil and endophytic micro-
biome data, each with its own total count (effort). Let G 
be the number of composition groups. If there are Lg 
response variables for a given FC or CC group g, then 
there are Lg−1 non-redundant columns in Y for group g. 
A sample includes information on the total number of 
non-redundant columns, S = ∑g Lg−G. A nearly-linear 
link function provides support over the real line for com-
position data, while providing estimates on the obser-
vation scale (Appendix S1).

Categorical data (CAT) describe unordered categories. 
If observation i refers to a sample plot, and the response s 
is a cover-type variable, then it might be assigned to one of 
several categories k, such as “tidal flat”, “low marsh”, or 
“high marsh”. If it refers to a sample plant, and a response 
is growth habit, it might be assigned one of four categories 
“herb”, “graminoid”, “shrub”, or “tree”. These are multi-
nomial responses. Like composition data, a categorical 
response s occupies as many columns in Y as there are non-
redundant levels Ks−1, because the Ks columns sum to 1. 
The observed category is that having the largest value of 
wis,k for response s (Table 2). The model of Zhang et al. 
(2008) is a special case for the treatment of categorical 
responses in GJAM (Appendix S1).

These data types can be modeled jointly in the R 
package  (Clark 2016a).

Zero inflation

A zero-inflated model is used to boost the zero cat-
egory for the purpose of better describing responses or to 
allow both for an underlying process that admits zero 
(e.g., a population cannot persist at a site) and for 
observed zero when the underlying process is not zero 
(the population can persist, but is not detected). The 
simplest approach uses the effort-based partition in Eq. 4 
to expand the k = 0 category

Note that the second value is greater than zero, but it 
approaches zero with increasing effort: effort decreases 
the probability of missing the species. The second 
approach to zero inflation is to model the missclassifi-
cation of the discrete state (Appendix S1). In this case the 
label zis must be estimated together with wis and param-
eters (Fig. 3c).

Model fitting

Model fitting entails simultaneous inference on param-
eters (B, Σ), together with latent states in W, Z, and any 
that are unknown in the partition P, depending on each 
observation type in the sample (Table 2). Posterior simu-
lation is done with Gibbs sampling in the R package  
gjam (Appendix S1), written in R (R Development Core 
Team 2012) and C++ (Clark 2016a). Prior distributions 
are discussed in the Appendix S1. Latent variables are 
sampled subject to the partition (Eqs. 2 and 4). Regression 
coefficients are sampled from the matrix normal distri-
bution with a non-informative prior. The covariance 
matrix is sampled from the inverse Wishart distribution 
where regression coefficients are marginalized. Where the 
scale is unknown (presence-absence, ordinal, nominal), 
parameter expansion is used to sample on the correlation 
scale. For ordinal data, the partition is sampled (Lawrence 
et al. 2008). Zero inflation involves an additional step to 
sample the discrete label zis when yis = 0 (Appendix S1).

Roles for Prediction

The covariance Σ plays a prominent role in predicting 
relationships between species. Matrix Σ is the covariance 
between species after removing relationships explained 
by the mean structure of the model, μi in Eq. 2. On the 
one hand, it is important to demonstrate that Σ is iden-
tified in the model, as we do with examples that follow. It 
is equally important to recognize that a model that 
explains much of the variation in data has high signal-to-
noise, �B′xi�≫

√
diag(�). In other words, we seek to con-

centrate variation in �=B�X. When this goal is achieved, 

(5)pi,0 =

(
−∞,

1

2Ei

]
.
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diagonal elements of Σ are small, and off-diagonals are 
indistinguishable from zero. Non-zero off-diagonals 
mean that species still have information to convey on the 
abundance of others, after accounting for μ. Given μ, 
marginal independence between species s and s′ means 
that Σs,s′ does not differ from zero. Potentially of greater 
interest, conditional independence means that �−1

s,s�
 does 

not differ from zero (Rajaratnam et al. 2015). Conditional 
independence means that there is no evidence for a direct 
relationship between two species. Alternatively, non-zero 
�−1

s,s�
 finds evidence for a relationship between species that 

does not come from their mutual relationships to other 
species or from μ. The applications of prediction that 
follow involve estimates of Σ and the role they play in 
missing data imputation, variable selection, sensitivity 
analysis, and species clustering.

Characterizing communities

The long tradition in ecology of defining communities 
is primarily based on correlation or distance matrices 
evaluated for empirical data (Gauch 1982, ter Braak and 
Prentice 1988). Joint models provide opportunity to 
examine community structure probabilistically on the 
basis of environmental responses, with full uncertainty. 
The Q × S matrix B contains relationships of each species 
to the environment, the “signal”, but not to each another. 
A predictive approach can translate B′X to an S  ×  S 
covariance among species. This translation requires a dis-
tribution for a vector of predictors x̃; the observed xi are 
fixed (xi is deterministic in the model), but we can assign 
a distribution to x̃ as a scenario, justifying the approach 
(Appendix S1). Consider a distribution of centered input 
variables having structure like that of observations

where V is a covariance matrix for x̃. Marginalizing x̃ 
contributes the environmental component of variation in 
response ỹ

Eq.  7 has the dimensions of a species covariance 
matrix (Ys × Ys′), and it has a corresponding correlation 
matrix RE. It is not the correlation matrix reported by 
Pollock et al. (2014). When S > Q (all examples given 
here), E is not full rank and thus does not have an inverse. 
We can evaluate a Moore-Penrose pseudoinverse. 
Matrix E summarizes species similarities in terms of their 
response to an environment x̃. Similar species have 
similar columns in B. Those similarities and differences 
are amplified for predictors x̃ with large variance. 
Conversely, species differences in B do not matter for 
variables in X that do not vary. The covariance in pre-
dictors could come from observed data, i.e., the variance 
of X, in Eq. 6. It could represent a subset of the data, e.g., 
that for a particular region. It could be a scenario for 
future conditions.

Sensitivity analysis

In univariate models, each element of vector B is a 
sensitivity coefficient, the effect of one predictor in X on 
one response in Y. Coefficients can be compared to 
evaluate the importance of Q−1 inputs in x (omitting 
the intercept). In multivariate models, coefficients in 
the Q × S matrix B do not quantify the overall impor-
tance of predictors. The S coefficients associated with 
each predictor cannot be added together or averaged. 
Inverse prediction integrates all S responses in yi, thus 
reducing sensitivity analysis from S  ×  (Q−1) coeffi-
cients to Q−1 coefficients, i.e., one per predictor var-
iable (Clark et al. 2011, 2013). For a model that is linear 
in X, the inverse predictive distribution from Eq.  6 
includes a quantity

that is the “information” contributed by the fitted coeffi-
cients. The inverse predictions of x can be compared 
using prediction scores (Gneiting and Raftery 2007) 
against the true values of x (Clark et al. 2013, 2014). An 
accurate and not-overconfident prediction has a high pre-
diction score. Brynjarsdottir and Gelfand (2014) suggest 
that the diagonal be used as a sensitivity coefficient

In both cases, the importance of each covariates in X is 
summarized by a single value fq, integrating all infor-
mation in the model.

Missing data and model selection

Species abundance data sets can be large and heteroge-
neous, often having missing values. The predictive distri-
butions for ỹ and x̃ allow imputation as part of Gibbs 
sampling (Appendix S1). Missing values become part of 
the posterior distribution.

Prediction can also be used for model selection. Model 
selection can be based on parameter space (e.g., Deviance 
Information Criterion (DIC), Akaike Information 
Criterion (AIC)) or predictive space (Gelfand and Ghosh 
1998, Dawid and Musio 2015, Hooten and Hobbs 2015). 
Advantages of the latter include the fact that the interpre-
tation of parameters changes with the model, but 
predictive space does not; it makes sense to criticize 
models in terms of their capacity to predict the data 
(in- and out-of-sample). We use DIC and the Gneiting 
and Raftery (2007) prediction score.

Model summary

In summary, for data all of one type, GJAM generalizes 
existing multivariate (MV) models, including the  MV 
probit (Chib and Greenberg 1998), MV Tobit (Clark et al. 
2014), MV ordinal (Lawrence et  al. 2008), and MV 
nominal (Zhang et al. 2008) models. It extends to new data 
types (discrete counts, composition), accommodating their 

(6)x̃∼MVN(0,V)

(7)E=B�VB.

(8)F=B�−1B�

(9)f=diag(F).
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differences through a partition that links continuous and 
discrete states and effort. Each of these methods can be 
viewed as special cases of Eq. 2 (Table 2). Each data type 
involves a coefficient matrix B and a covariance matrix Σ. 
Depending on a partition P, which incorporates effort E, 
parameters generate continuous W and, when it is 
unknown, discrete Z. In the case of ordinal data, the par-
tition is also estimated. For presence-absence, ordinal, and 
categorical data Σ is a correlation matrix R.

So one size fits all, but the framework can go further. 
The same model applies when the different data types are 
modeled together. In GJAM, the partition and selective 
use of parameter expansion allows modeling with Eq. 2, 
where each column of Y can be a different data type. In 
the diagnostics and applications that follow, we show 
how it applies to combined data.

Diagnostics

Simulated data

To determine if GJAM recovers true parameter values 
and can predict data, we conducted simulations. Simulation 
steps include (1) specify partition P for different data types, 
(2) generate random parameter values (B, Σ) and design X, 
(3) draw a sample W, and (4) partition W with P to obtain 
Z and Y (Eq. 2). Posterior distributions were simulated to 
confirm parameter identifiability and data prediction.

Figs. 6 and 7 illustrate joint modeling with a mixture of 
attributes that includes ordinal counts (e.g., host or plot 
condition, qualitative assessments), presence-absence 
(e.g., potential pathogens, predators, herbivores), con-
tinuous abundance (e.g., basal area, biomass, nutrient 
concentration), discrete abundance (e.g., number of seed-
lings), count composition (e.g., microbiome data), and 
continuous without censoring. Coefficients for all data 
types are estimated jointly (Fig. 6a), including the corre-
lation matrix (Fig. 6b). The partition matrix for ordinal 
data is recovered (Fig. 6c). The fitted model predicts all 
data types well, despite contrasting scales (Fig.  7). 
Predictions are least accurate where there are small 
numbers of observations, shown as histograms below 
predictions in Fig. 7. Extensive simulation studies were 
used to determine that the model predicts disparate 
species groups and attributes, each informing the others 
in ways that can contribute to prediction.

To determine the effect of collapsing abundance data 
into presence-absence, we compared estimates for simu-
lated abundance data fitted in two ways, one as abun-
dance and another as presence-absence. We found that 
excellent parameter recovery on the abundance scale 
(Fig. 8, left) does not translate to the presence-absence 
analysis, particularly the correlation matrix (Fig.  8, 
right). Even presence-absence is predicted better by the 
abundance model than by the presence-absence model 
(Fig.  8, lower panels). Furthermore, presence-absence 

Fig. 6.  Joint modeling of simulated data for Q−1 = 4 predictors, n = 2000 observations, and S = 17 species. Data types include 
continuous with no zero censoring (CON), presence-absence (PA), continuous abundance (CA), discrete abundance (DA), count 
composition (CC), and ordinal counts (OC). Coefficient estimates in panel (a) and correlation estimates in panel (b) include all 
combinations of data types. For ordinal categories partitions are accurately predicted in panel (c). Vertical whiskers are 95% credible 
intervals. B̂ P̂ R̂ are estimates of B, P, and R, respectively
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models cannot admit any species that are present at all 
sites, i.e., the most abundant species. Thus, GJAM allows 
us to evaluate the consequences of discarding abundance 
information and shows that effects can be substantial.

GLM comparisons

We compared GJAM with current practice based on 
GLMs. Comparisons with simulated data have the 
advantage that “true” parameter values are available 
from simulation, but they should be further checked with 
real data, which, of course, do not have a “correct” 
model. We wanted to know if the Gaussian first-stage 
model was unrealistic and thus might perform poorly in 
comparison to standard link functions in GLMs.

Fig. 9b compares a standard GLM model (Poisson like-
lihood with log link) with GJAM for stem counts on FIA 
data (data used in Forest inventory in eastern North 
America), using the same predictors in X. The GJAM root 
mean square prediction error (rmspe) is half that of the 
GLM. The modal predictions for GJAMs are consistently 
closer to the data than for the GLM. The downward bias 
in the Poisson model is pronounced at high values, because 
the log link emphasizes the lowest values. GJAM does not 
differentially weight observations by abundance alone and 
is much more accurate than the GLM at high values, which, 
again, might often be of most interest. Thus, the linear link 
and Gaussian assumptions in GJAM perform better, not 

worse, than the standard model. It has the further appeal 
that parameter estimates are on the same scale as the obser-
vations and thus have transparent interpretation.

Differences are still more striking for the Bernoulli 
example in Fig.  9a, where the rmspe for the GLM is 
37-fold larger than GJAM. Both models involve the 
probit, and they have the same mean structure. The 
models differ in that GJAM jointly models host status 
(Fig.  1a) together with its endophytic microbiome 
(Fig.  1b), composition data. In other words, GJAM 
synthesizes multiple data types, while still offering 
superior prediction for each individually.

In summary, although the Gaussian assumption of 
GJAM could be criticized as being unrealistic for real 
data, we show that it performs better than standard 
models widely used in ecology. To determine if perfor-
mance is improved by the generalizing the Gaussian to 
asymmetric distributions we have implemented the skew-
normal (Azzalini 2005), including for composition data, 
and find negligible benefit despite substantially greater 
complexity (Taylor-Rodriquez et al., in press).

Applications

Forest inventory in eastern North America

Just as the environment controls distributions of species 
(Cowles 1911, Sinclair et al. 2010), the biodiversity of a site 

Fig. 7.  Joint data prediction for the example in Fig. 6. Frequency of observations in Y is shown at the base of graphs (pink 
bars). Box and whisker plots are 68% and 95% predictive intervals. Boxplot components as in Fig. 5.  Dashed lines are 1:1 (diagonal) 
and mean of the true values (horizontal).
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might hold clues to the environment. The promise that 
vegetation might reveal underlying environmental 
conditions has motivated its use for water and mineral 
prospecting (Brooks 1979), disease risk (Robinson et al. 
1997), climate reconstruction (Brewer et  al. 2012), and 
conservation (Larson et  al. 2004, Nichols and Williams 
2006). But individual species or aggregate vegetation char-
acteristics (e.g., remote sensing) tend to be limited in their 
indicator value (Cannon 1971, Brooks 1979, Ellenberg 
1982, Dufrene and Legendre 1997, Gmez-Girldez et  al. 
2014). For example, most soil types and terrain offer only 
slight advantages for some species over others, and most 
species still occupy a broad range of sites (Whittaker 1978). 
GJAM provides a first opportunity to predict site condi-
tions probabilistically, without need for indicator species, 
through inverse prediction from the full (joint) model.

This example uses USDA Forest Inventory and 
Analysis (FIA) data to combine species-level data with 
plot-level data. We demonstrate application with 

variables at these different scales, including inverse pre-
dictive of the environment. Responses are plot-level 
foliar N and P, both continuous responses as community-
weighted mean values (Clark 2016b), together with 
biomass of tree 98 species that occurred on at least 50 
plots, all continuous abundance with point mass at zero; 
there are a total of S = 2 + 98 = 100 responses. FIA data 
come from 0.0672-ha plots established at a density of 1 
plot per 2,428 hectares (Bechtold and Patterson 2005, 
Woudenberg et al. 2010, USDA 2012). All trees >12.7 cm 
in diameter are counted and measured. Individual plots 
are so small that each species is represented by, at most, 
a few individuals, and many species present in an area 
will be absent simply due to small plot size. For this 
reason, analyses are often based on aggregate plots 
(Iverson and Prasad 1998, Clark et al. 2014, Zhu et al. 
2014). For this illustration we aggregate 19,568 FIA 
plots into 1,617 1-ha plots, a k−means clustering using 
covariates (Schliep et al. 2015). In other words, plots are 

Fig.  8.  Parameter estimates (B, R) and data prediction (Y) for abundance data fitted as abundance (left) and as presence/
absence (right). For this simulated example n = 200, S = 10, Q = 5. Boxplot components as in Fig. 5. Grey dots are individual 
median estimates, summarized by boxplots. Both analyses were done with the R package gjam (Clark 2016a) based on the same 
simulated abundance data. For the presence-absence example, matrix B is translated to the correlation scale (Appendix S1).
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similar in covariate space. Most observations (72%) are 
zero. Predictors in the model include temperature, 
moisture, local terrain (slope, aspect), and soil type. 
Slope and aspect are represented by a length−3 vector 
specified in the caption of Fig. 11. Predictors have low 
correlation with one another and low variance inflation 
factors (Appendix S1). Computation makes use of the 
dimension reduction algorithm of Taylor-Rodriguez 
et  al. (2016), although a data set of this size does not 
require it (Clark et al. 2014).

We first determined that the model predicted the 
responses (Fig.  10), including the overall plot richness, 
which was not actually fitted with the model (Fig. 10c). 
We include this because SDMs over-predict richness 
(Guisan and Rahbek 2011, Clark et al. 2014). Accurate 
but wide predictive intervals for the continuous foliar 
traits reflect the fact that these are plot-level variables, 
contributed by species with a broad range of foliar N and 
P values (Fig. 10a). Continuous abundance predictions 
for tree biomass are broad for non-zero observations, 
because most are rare (histogram at the base of Fig. 10b). 
Likewise, the species richness predictions are poor for the 
most- and least-diverse sites, because these sites are rare 
(Fig. 10c), but are otherwise accurate.

Soil types and slope emerge as the most important pre-
dictors in the model (Fig.  11). They account for the 
largest effects on individual species (Fig. 11, right). The 
predictive distributions for overall sensitivity F̂ (Eq.  8) 
are highest for two soil types, the ultisols that dominate 
the eastern Piedmont and the mollisols most prevalent in 
the Upper Midwest (Fig.  11, left). Despite the strong 
effect of slope (u1), aspect effects (u2, u3) are weak for all 
species (Fig. 11, right).

Despite the fact that individual predictors show that 
slope effects are large for only a few species, and aspect 
effects are weak for all species (Fig.  11), the full model 
allows precise inverse prediction of the local environment. 
Taking aspect as an example, effects are evident in only a 
small subset of species, with mesic species biased toward 
the northeast (Fig.  12). Even for the most responsive 
species, effects are subtle, less than 5 m2/ha basal area on 
20° slopes. Despite weak site effects for species individ-
ually, inverse prediction provides precise predictive 
capacity not only for regional temperature (Fig. 13a), but 
also for local habitat, including moisture, slope, and aspect 
(Fig.  13b–d). By exploiting information for all species 
together inverse prediction identifies habitats where no 
individual species could. These results indicate that the 

Fig. 9.  General linear models (GLM) and GJAM predictions for (a) host status from Fig. 1a and for (b) stem counts, for the 
same plots represented by biomass data in Fig. 1c. GLMs use a Bernoulli likelihood with a probit link and a Poisson likelihood with 
log link, respectively. In panel a, predictor variables are temperature, host species, and polyculture treatment, the last two variables 
being factors. GJAM models the combined host status and microbiome as responses. In panel b, the predictors are stand age, 
temperature, moisture, climatic deficit, topography, and soils, the last being a factor. The 1:1 line of agreement (dotted line) and root 
mean square prediction error (rmspe) are shown for each example. Boxplot components as in Fig. 5. Data in panel a is from Hersh, 
Benetiz, Vilgalys, and Clark, in preparation.
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species modeled jointly can be used to predict local site 
conditions, despite the fact that individual species cannot.

The model further indicates that structure in abun-
dance data does not provide an accurate representation of 

environmental responses in the model. Standard methods 
for identifying structure on ecological communities build 
from co-occurrence or abundance data. Fig. 14a shows 
the species × species correlation matrix, a starting point or 

Fig.  10.  Predicted continuous (a) foliare traits, (b) biomass, and (c) species richness for the USDA Forest Inventory and 
Analysis (FIA) data. The distribution of data is shown as histograms. Boxplot components as in Fig. 5.
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close relative of similarity matrices used for many clus-
tering and ordination methods (e.g., Oksanen 2008). The 
order of species in Fig. 14a follows a cluster analysis to 
highlight similarities among species. A complete-linkage 
algorithm was used in the R package stats::hclust 
(R Development Core Team 2012). This and other clus-
tering algorithms we applied found only weak pattern in 
the data. With the exception of few “red” combinations in 
Fig. 14a, correlations are almost entirely in the range from 
−0.2 to 0.2. The response matrix Ê in Fig. 14b from Eq. 7 
is assembled in the same order as Fig. 14a. If the variation 
in field data was explained by the model, then patterns in 
the two should be similar. They are not; the dense mixture 
of high positive (red) and negative (blue) values in Fig. 14b 

means that the structure in field data is quite different 
from the structure of responses.

However, when we reorganize Ê according to its own 
structure there are clear species assemblages (Fig. 14c). 
The strong contrasts in colors, clearly organized in species 
groups, shows that structure in the response is dramatic 
and not “well captured” by the tendency to co-occur.

Synthesis of microbiome data

Synthesis of data collected and analyzed by different 
methods and for different purposes is a goal of micro-
biome research (Gilbert et  al. 2014). Synthesis is chal-
lenging, due to the size of sequence data (Lauber et al. 

Fig. 12.  Effect of aspect (south, S; west, W; north, N; easte, E) on basal area for species showing the greatest responses, given 
as the sum β

u1,su1 +β
u2,su2 +β

u3,su3. where βq,s is an element of coefficient matrix B. Envelopes bound responses for slopes of 10°–20°. 
The vertical scale is in units of basal area (m2/ha). Species codes are Amelanchier spp. (amelUNKN), Asimina triloba (asimTril), 
Cercis canadensis (cercCana), Cornus florida (cornFlor), Crataegus sp. (cratUNKN), Ilex opaca (ilexOpac), Nyssa biflora (nyssBifl), 
Quercus elliotii (querEiil), Q. lyrata (querLyra), Q. virginiana, Taxodium ascendens (taxoAsce), T. distichum (taxoDist).
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2009), over-representation of zeros, variable effort of 
composition data, and the fact that few studies collect 
ancillary data needed for model fitting and prediction. 
The large number of operational taxonic units (OTUs) 
generated by sequence methods poses a “big S, small n” 
problem; S can be orders of magnitude larger than n. 
Dimension reduction schemes seek to zero out elements of 
B, Σ, or Σ−1 or to reduce the rank of B′X or Σ (e.g., Pati 
et al. 2014, Goh et al. 2015, Rajaratnam et al. 2015). Thus 
far, microbiome data have been evaluated primarily with 
descriptive techniques, to identify groups of taxa that 
could be related in where they occur and how they respond 
to the environment. The inconsistency in covariates means 
that a given predictor variable is likely to be absent for 
many samples. Finally, the sampling effort varies over 
orders of magnitude, the number of reads per sample 
(Fig. 1b). This variation has led to the practice of rarifying 
samples down to some common sum, thus discarding the 
bulk of the information (McMurdle and Holmes 2014). 
We focus on dimension reduction for the GJAM in a sep-
arate study (Taylor-Rodriquez et  al., in press) focusing 
here on the more fundamental question of potential for 
model-based analysis of microbiome data.

Data for this example come from the Earth Microbiome 
Project (EMP) global soils database, a project initiated to 
standardize molecular phylogenetic approaches across 
datasets to facilitate comparisons within and between 
studies (Gilbert et al. 2014). This composite data set pro-
vides no common predictors other than latitude and a 
habitat variable. The second most frequent variable is 
pH, which is available for only 245 (50% of) studies. 

These challenges are common for data compilations. The 
example provides opportunity to examine if effective 
inference for such combined data sets can be done despite 
the high degree of data imputation, for median-zero data, 
and few covariates.

To illustrate GJAM application to composition data, 
we extracted all OTUs that occur in at least 350 samples. 
Typical of molecular phylogenetic data, observations are 
dominated by soil bacteria, primarily Acidobacteria and 
Proteobacteria. Estimates integrate the heterogeneous 
effort represented by observations that range over four 
orders of magnitude in total reads (Fig.  15). GJAM 
imputes missing values, but we anticipate that massive 
missingness will degrade the fit. The effect of effort comes 
through the weight contributed by samples, those with 
least effort having the highest variance (Fig. 5b) and thus 
the weakest contribution. Predicted abundance is imprecise 
(not shown), reflecting tremendous scatter in the data, pri-
marily zeros, few predictors to include in the model (pH, 
latitude), and massive imputation of input variables (50% 
for pH, and two latitude values). Still, sensitivity estimates 
show clear differences between inputs, including a stronger 
effect of latitude than pH. They further indicate some 
capacity to inverse-predict pH and local habitat, but not 
latitude, from the fitted model (Fig. 16). Clear structure in 
the E matrix is indicated by red blocks at left in Fig. 17. On 
the standardized scale, pH and latitude have little impact 
in comparison (right side of Fig. 17).

The fact that half of all pH data had to be estimated 
(blue dots in Fig. 16b) together with coefficients suggests 
that improvement will come simply from greater 

Fig. 13.  Inverse prediction of (a) temperature, (b) moisture, (c) slope, and (d) aspect. In panel d, symbol size is proportional to 
slope (zero slope has no aspect). Boxes and whiskers are 68% and 95% predictive intervals, mid lines are means. The distribution of 
data is shown as histograms. Temperature and precipitation are centered and standardized (dimensionless).  Boxplot components 
as in Fig. 5.  In all panels, the horizontal axis is observed and the vertical axis is predicted.
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availability of predictor variables. Even with these limi-
tations, GJAM shows that microbiome data can be used 
to predict habitat (Fig. 16c), if not the reverse. These esti-
mates highlight the importance of some standard set of 
predictors deemed important for the microbiome that 
would be encouraged from all investigators. We are now 
engaged in an extensive analysis of individual data sets 
where there are many inputs.

Discussion

The GJAM framework accommodates the medi-
an-zero, multivariate, multifarious nature of attribute 
data with an explicit connection between discrete and 
continuous observations on all species simultaneously 
(Fig.  3). The framework extends joint species distri
bution modeling to generalized joint attribute modeling 

Fig. 14.  Correlation structure (a) in data and (b) in response to the environment. The structure in panel a comes from the 
ordering of species by cluster analysis of the abundance data. Predictive distributions for the matrix Ê in panel b are ordered as in 
panel a but show no such structure. (c) When clustered instead by Ê clear structure emerges (c).
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(GJAM). Avoiding the transformation and rescaling that 
is needed with alternative methods facilitates interpre-
tation of correlation structure on the observation scales. 
Advantages resolve some important challenges for 
species distribution models (SDMs) and joint species 

distribution models (JSDMs), including those that con-
sider abundance (Latimer et  al. 2009, Thorson et  al. 
2015).

A first advantage is accurate prediction. Recent studies 
note the challenges of prediction from species distri-
bution models (Baselga and Araujo 2010, Guisan and 
Rahbek 2011, Clark et al. 2014). The accurate predictions 
for multifarious data with GJAM relies on proper 
treatment of continuous and discrete data, including 
overwhelming zeros. We verify parameter recovery and 
predictive performance in simulation (Figs.  6–8). We 
demonstrate some advantages over standard methods for 
probabilistic prediction (Fig. 9). Although GJAM avoids 
the scale distortion that comes with a non-linear link 
function it predicts data better, not worse, than standard 
GLMs (Fig. 9). Unlike algorithmic-based methods, such 
as regression trees, it provides sensitivities to all inputs 
and species covariance, with full uncertainty.

The capacity to infer and interpret relationships 
between species on the observation scale avoids the dis-
torted correlations that result from fitting hierarchical 
models with link functions (Fig. 2). For data that lack an 
absolute scale, presence-absence, nominal, and ordinal, 
the imposed unit-variance scale still permits parameter 
recovery and accurate prediction, including their rela-
tionships with other species that do have an observation 
scale (Figs.  6 and 7). These relationships range from a 
simple tendency to co-occur (presence-absence data), to 
possess attributes that co-occur (categorical data), to co-
occur within similar ordinal categories, and to co-occur 
at similar absolute abundances (other data types).

Inverse prediction (IP) is especially valuable in the joint 
setting, not only for missing data imputation, but also for 
extracting the role of input variables (Figs. 13 and 16). IP 

Fig.  15.  Reads per OTU massively overrepresents zeros, 
but can range as high as 106.
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provides detailed insight on the environment by combining 
the information in all species and the model. Although 
microbiome diversity is not well predicted by the envi-
ronment in this example, results show promise that the envi-
ronment can be inversely predicted from the microbiome 
(Fig. 16c). Although “indicator species” are rarely available 
for important environmental variables, the full community 
can provide precise insight (Fig. 13). For sensitivity analysis, 
IP reduces the contributions from 103 parameter values in B 
and Σ to Q−1 sensitivity coefficients (Fig. 11).

The question of how many species to model requires a 
few technical remarks. We do not report here on 
dimension reduction methods for the GJAM, but it 
accommodates them (Taylor-Rodriquez et al., in press). 
Most ecological data sets do not involve thousands or 
even dozens of species. For those that do include many 
species, a hard limit on the total number of species that 
can be modeled depends on n, just as a hard limit on the 
number of predictors in B (in absence of dimension 
reduction) cannot exceed n. The covariance matrix 
Σ must be full rank to allow inversion and model fitting. 

A prior distribution can rescue an otherwise non-
invertible Σ, but then the prior dominates. By marginal-
izing regression coefficients in our sampling of Σ 
(Appendix S1), we avoid high sensitivity to a prior at the 
cost of requiring that Σ is full rank. Long before a hard 
limit on number of species is reached, we expect a 
degraded fit. Our applications show GJAM working well 
for >102 species. Given that microbiome data are domi-
nated by zeros (Fig.  15), many applications may still 
work with subsets or aggregations of sequence data. As 
mentioned above, productive developments can focus on 
rank reduction, in which case many more species can be 
included (Taylor-Rodriguez et al. 2016).

In conclusion, GJAM provides new flexibility for 
inference and prediction from ecological data. GJAM 
aligns the scales for observations of many types and fits 
the model on observation scales.
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Fig. 17.  Response matrix Ê showing groups of OTUs similar in their responses to environmental variables, explained primarily 
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O
T

U
Ê
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