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1 Summary

Here we provide background on the model, computation, and data. Citations not included in
the main text are given in Section [6] Additional information is available as vignettes for the
R package gjam: https://cran.rstudio.com/web/packages/gjam/index.html.

2 Additional model background

2.1 Graphical interpretation

The interpretation of discrete observations is extended here in graphical form. The regression
(dashed line) in Figure [S1h, c is the model for latent W|z. The model 'generates’ a continuous
W, then a discrete observation Y = 3, because the realized W lies within the interval (ps, p4]
(Fig. [S1b). Model fitting inverts these steps, starting with the observation Y = 3 (Fig. [S1{),
which is assigned by the partition to an interval for W (Fig. [S1k). Note that values of W < 0
are assigned by (po, p1] = (—00,0] to Y = 0.
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Figure S1: Graphical relationships between continuous W and discrete Y, highlighted for an observed value of

Y = 3. The regression is shown as a dashed line in (a) and (c). For a given value of x there is a distribution of
values for . The partition, shown as vertical lines in (b) and (d), segments W into discrete values of Y. As
a generative model (a, b), W is random given z, B, X. For inference (c, d), a distribution of observed Y (d)
maps to the truncated distribution for W (c).
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2.2 Likelihood for censored values and covariance

Here we use the likelihood function to relate the variance in an observation to the width of a
partition interval. To simplify notation we assume V(i, s) : E;; = E = 1, and we omit subscript
1 on w and y. For discrete, and thus, interval-censored, observations the joint probability of
two species (s, s’) within intervals (k, k') is

_ o 73/2 71/2 Ps/ k! 41 Ps,k+1 1 e
lys = k,ye = k'] = (2m) /7| X exp| 5 (W—p) S (w—p) | dw,dwy (S1)
s’ k! Ps,k

Obviously, the wider the interval, the greater the probability that (w;s, w;s) will lie within it.

There is a contribution to the variance that comes from integrating over the interval. For
species s and interval k having interval width psi41 — psx we have the conditional second
moiment

Ps,k+1
Blutud] = [ w6 (wii )

Ps,k
where ¢ is normal density function with conditional mean and standard deviation u,, o5. For a
narrow interval this integral is proportional to the width of interval k. The example in Figure
of the main text shows this effect on y;,, which influences the weight of observations, while
still allowing us to estimate 3.

2.3 Prior distributions

Prior distributions for examples in the main text are non-informative. This is particularly
helpful for the covariance, lending stability to Gibbs sampling and avoiding dominance by a
prior (Section [3)). From Eq. [2] of the main text we include prior distributions,

[[MVN(wiB'x;, £) x MV N(vee(B)|0, E @ C) x |B|($+2)/2 (S2)
=1

where the prior matrix C has infinite variance. The third factor is the Jeffreys prior for the
covariance matrix (Yang and Berger 1994, Sun and Berger 2006). Gibbs sampling is discussed
in Section Bl

The R package gjam (https://cran.rstudio.com/web/packages/gjam/index.html) ad-
mits truncated prior distributions on B, as can be useful when the sign of an effect is known
(Clark et al. 2014).

2.4 Interval censoring by data type

In this section we provide background on specific data types that involve interval censoring and
shown in Table 2 of the main text. We show how the partition links to the indicator function
in Eq. [3] of the main text,

Iich = [(pis,k < Wis S pis,k—i-l) (83)

We do not repeat here discussion of data types that use this indicator precisely and are described
in the main text.
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Chib and Greenberg’s (1998) probit model is a special case of GJAM for presence-absence
data, where censoring could be represented as Z;, = I(w;s > 0)%s I (w;s < 0)17¥is,

Zhang et al.’s (2008) model for multivariate categorical data fit within the same framework.
Let w;,; refer to the latent value for the k% level of response s. For multiple responses,

L, wisk > 0Awisp = mazy (Wis )

is,k — 84
Yisk { 0, Wis e < MaZps (0, Wis ) (54)

where £/ = 1,..., K, — 1, and K, is the number of levels for response s. The first line of Eq.
specifies that the observed class must not only be positive, but also the largest w;s; value
in the Ky — 1 columns. If all values are negative, then the reference class is the observed class.
The matrix W has columns for each non-reference level of each categorical response, w; =
(Wit s s Wit Ky—1y - - Wit - - - Wis kg—1). The Y Ky — S rows and columns of correlation
matrix X hold correlations for all combinations of s and k. The indicator for correct interval
membership could be written for this model as

K-1

1-yis,k

Iwis g > 0) 1 (wis . = maxy (wis p)]"* X I (wisp < mazg (0, wis )
k:l

For multivariate ordinal data Lawrence et al.’s (2008)

model is a special case of GJAM. The multivariate partition
has elements p, j, that differ for each species, both in number
and location. Because there is no scale, all but the first
two and the last elements must be inferred. The indicator
function applies to ordinal counts.

The partitions for other data types follow Eq. and
are discussed in the main text.

2.5 Composition data

Figure S2: The nearly-linear link func-
tion g—! for composition data. Up to a

Here we discuss the link between W and Y for composition
constant a the link is linear.

data. The latent W must be supported over (—oo,00). A
generative model can predict W anywhere in this range,
which is partitioned as p;; = (—00,0,1,00). Recall that
fractional composition data have the sum-to-one constraint, Zf yis = 1 and support for y;s over
0, 1], with point masses for absent species and when an observation is dominated by a single
species. Count composition data are integer values, but because they have interpretation only
in a relative sense, they too are modeled on the [0, 1] scale. In both cases there is a redundant
column in Y, defined here to be the reference species S. To discuss this common issue for both
types of composition data we introduce the variable 7;s € [0, 1] as the relative scale that applies
in either case, 3% 7, = 1. Our goal is to link the latent scale w;, € (—o0,00) to 1 € [0, 1],
which can have point masses at zero and one, but cannot be negative or greater than one. We
make this connection through the reference species, arbitrarily the last species S.

For prediction, the sum of non-reference values must be less than or equal to one. Here is
the sum and inequality for a latent vector w;:



Wy = Y [0 < wiy < Dwgs + I(wiy > 1)] < 1 (S5)
s£S
Because the w;s are constrained by data, and data determine parameter values, w; predicted
by Eq. [2| of the main text will typically satisfy this inequality, but not always, and not in
theory. For cases where predicted w; do not satisfy Eq. [S5 we require a link function, one
that maps a new vector i, — w; with the sum-to-one constraint on 7. Additionally, we want
a nearly linear relationship between 7n;; and w;s, again, with the goal of modeling data on the
scale where they would be interpreted, in this case [0, 1]. Here we describe a link function that
meets these criteria.
The sum of the non-reference species for the composition variable is

i = st <1 (S6)
s£S
Near-identity is obtained if 7;s = w;s in the range 0 < w; < a for a value of a that is close
to 1. In other words, the two are equivalent whenever the sum of non-reference species is not
too large, specifically, 7; < a (Fig. . When w; > a, the scales are not precisely equivalent,
w; > 1n;, and the w; vector must contract. The inverse link function from w; — n), is

Oa Wis S O
1 ~
g (wis§a) = Wis, w; < a,wis >0
Diwig, w; > a,w;s >0

where the compression factor is D; = @; '[1—(1—a)?/%]. The link function (1, — w;) balances

with a proportionate expansion

<0, =0
g(nis;a) = Nis, T <a
Cinis, a<m; <1

the expansion factor being C; = 7, 1a§2§ 8:2;

Figure shows how the nonlinear portion of the link function applies where the sum of

non-reference species exceeds a for count composition data. When this occurs the link is not
a precise identity. It is close, because data y; tend to bound w; away from 1, and a can be
specified close to 1. When w; > a, the degree of compression is still small.

As with other data types in GJAM, this model for composition data is generative—we can
predict w; from B’x;, then link w; — n;. For fractional composition data y; = n;. For count
composition data, predicted 7; translates to y; through the partition (Fig. of main text).
Extensive simulation shows that GJAM predicts composition data (e.g., Figure [7| of the main
text).

2.6 Missclassification, including zero inflation

If the discrete state can be miss-classified the model allows for uncertain z;. Then z; in Eq.
of the main text moves to the left of the bar,



Wiuzi|xi7Yi7Ei ~ MVN /‘l’m XHIzs (87)

Lis = H]lls(?é*k 1— I, ) 1(zis#k) X ¢k(yis;ﬂiyz)
keC

The function

¢k(yz‘s; His, Uis) = [Zis = k?|yz‘s; His, Uz‘s] (88)

now appears on the right, being the probability that the true interval is z;; = k given that
the observation was assigned interval y;;. Parameters are the conditional mean and variance
for response s in observation i. 1y (y;s) depends on the miss-classification error probability (by
Bayes Theorem). Miss-classification is the inverse of 1 (y;s), i.€., it is the probability that the
observation is assigned to an interval y;, that might not be the true interval k. Again, the most
common miss-classification is zero-inflation, described by 3 (0) for true k£ > 0.

With zero-inflation not only W, but also Z is stochastic. Zero inflation is a specific type of
misclassification or observation error, assignment of an observation to a discrete class ;; when
the true state z;s belongs to a different class. Misclassification requires a probability of z;, in
terms of w;,. From Eq. [2| of the main text z;; and w;, are related as

DPs,k+1
Es,k = [Zis = k’#isa Uz’s] = / ¢(wis;,uisv Ois>dwi3 (Sg)

Ps,k
where ¢() is the normal density function for s having conditional mean and variance depending
on other species. Misclassification error has a probability that an observation is assigned to
class k' when it belongs in class k,

eis(kla k) = [yis = k/’Zis = k] (810)
By Bayes Theorem, the probability that the true interval is £ is

ezs(k/ k) is,k
Zk zs(k k) is,k

Zero inflation is an example. Consider a continuous response with zeros (Fig. of main

wis,k(k/) = [zis = k|yzs = k] (S]_l)

text). We wish to inflate the zero class by allowing that it could represent not only the model
for Z = 0 but also for Y = 0 when there is detection/sampling error. In the case of two classes,
we could have a positive (continuous) class and the zero class associated with Y = 0, Z = 0,
and W < 0 (Fig. B). A zero observation can obtain because the species cannot survive at a
location 1, i.e., for reasons that might be explained by the model pu;s or because it is missed
due to sampling, with probability 0;5(0,1) (it is present and, thus, belongs in class 1, but it is
not observed and erroneously assigned class 0). For a continuous response with zero inflation
the probability that the species cannot survive at the site given observed zero is

ES,O

is,0(0) = |zis = Olyss = 0] =
77Z} ,0( ) [Z |y ] E&o -+ (1 - Fis,())eis(o’ 1>

(S12)

where



ES,O - [wis < 0] - (I)(,Ui,sa Us)

(Eq. . An observed zero has some probability of being non-zero and the probability that
the species is simply missed in sampling,

[Yis = 0] = Fig0 + (1 — Fis0)05(0, 1)
The second term ’inflates’ the zeros contributed by the first term. Sampling a latent true class
for an observation [z;|y;s = 1] can shift the class to which latent w;s belongs (Fig. [3¢) and
thus the partition used to sample w;s (Eq. 2).
A number of models for detection error are possible. A beta prior density

0(0,1) ~ beta(qq, g2)

can have parameter values selected by moment matching. A sample-based prior might reflect
levels of effort F; associated with samples, detection error declining with effort, such that the
mean of 0(0, 1) is proportional to exp(—E;). Effort could be related to plot size, search time, or
search area. Selection of prior parameter values (qi;, ¢2;) to give this prior mean with specified
weight lead to the conditional posterior

9(07 1) ~ bet@(éhi + Z I(yzs = O)I(Zzs = 1)7 q2; + Z [(yzs > O)

Alternatively, a species-based prior might reflect crypsis, behavior, or other factors influ-
encing detection probability, such that the mean of 6(0, 1) is proportional to exp(—Ej).

A third option is a model-based zero class (Clark et al. 2014). Detection error can have
a probit specification, 60;(0,1) = ®(,u}), where u; is a design vector, v, is the vector of
coefficients, and ®() is the standard normal distribution function.

A fourth option, where u; is taken to be identical to x; (presence and abundance explained
by the same predictors), makes parameters proportional to those used to predict abundance,
0;5(0,1) = &(8,x}7s) (Lambert 1992).

3 Computation notes

All latent variables and parameters are drawn directly from conditional posteriors, X|(W,B),
B|(X, W), and, for unknown partition (ordinal variables), P|Z, W. Here are conditional dis-
tributions:

vec(B) ~ MVN ((X'X)"'X'W,X® (X'X)™)
S ~ IWh—-Q+S—1,WDW)
where D = I,, — X(X'X)~!X'. Here is the conditional distribution for the ordinal partition:

Pk ~ unif (max;(wis|zis = k), min;(wis|zis = k + 1))
(Lawrence et al. 2008). Latent variables for ordinal, presence-absence, and categorical data
are drawn on the correlation scale, W|R, o, P, where R = VI2EVvTY2 o= V28 P =
V2P and V = diag(X). For other data types, latent variables are drawn on the covariance
scale, W|X, 3, P. Due to direct sampling, convergence is fast.
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4 Prediction notes

The prediction methods discussed in the main text follow those of Clark et al. (2011, 2013),
with some background for implementation in GJAM summarized here.

4.1 Distribution theory

We use two predictive distributions. The environmental component of the response (E of Eq.
in the main text) makes use of the predictive distribution for response Y,

YIX, X, Y| = [ |V|X,0][0)X,Y]dd (S13)
[Fiexy] = [ 1)

The integrand contains the likelihood (Eq. and the posterior distribution for parameters,
0 ={B,%,P}. Input X can equal X (in-sample prediction) or not (out-of-sample prediction).
If we place a prior distribution on X we can marginalize it as well,

[?\X,Y} :/[?]X,X,Y] [X] dX (S14)

Whereas Eq. evaluates the prediction for a specific X, Eq. incorporates variation in
X.

The second predictive distribution is needed for the sensitivity matrix F of Eq. [§ of the
main text. The inverse prediction for input X is

o VX, x| [X]
[X|Y,X, Y} - - (S15)
[Y|X, Y]
We term this the ’inverse prediction’ (Clark et al. 2011, 2013).
4.2 Inverse prediction
Inverse predictions of X for linear terms are sampled directly,
x;|(B, %, w;) ~ MV N(Vv,V) (S16)

where

vVl = B 'B+U"!
v = BY'w;+ U 'u

and U, u are the prior covariance and mean vector for X;. Non-linear terms (those involved in
interactions and squared terms) are sampled using Metropolis.

Multilevel factors become categorical variables upon inversion. The predicted category is
the largest predicted value from Eq. for factor levels. Predictions are marginalized over
the posterior distribution of parameters and latent states.



4.3 Missing X

Missing values in x; require conditional prediction, i.e., only for those values that are missing.
The missing values x; 4 are a subset of the vector, A C {2,...,Q} (i.e., not the intercept).
The non-missing values A® are the complement of A in observation i and always includes the
intercept. For linear terms, missing values are drawn from

)PV(Z"A’(XZ',AC,B,E,WZ') ~ MVN(VV, V) (817)

where

V' = B, B4+ U}’

v = BAE_I(Wl - BACXi,AC> + UZIUA

and Uy, uy are the prior covariance and mean vector for x; 4, and B4 and B 4c are the rows
in B corresponding to A and A¢, respectively. Non-linear missing values (those involved in
interactions and squared terms) are sampled using Metropolis.

When one category of a multilevel factor is missing, all are missing, A is the set of all
categories for the factor, and the predicted category is the largest predicted value in the X; 4

vector from Eq. [ST7]

Estimates are marginalized over the posterior distribution of parameters and latent states.

4.4 Missing Y

Missing values in Y are predicted conditionally, first W| X, then translated to Y by partition
P. Missing latent variables are drawn conditionally,

Wi al (Wi a0y, B, X, %;) ~ MV N (50, Zg)(s0))

where w; 4, W; 4o are missing and non-missing responses in ¢, and p; ), 2)(sc) are the mean

vector and covariance for missing responses conditional on non-missing responses. For contin-

uous observations Y = W. For discrete observations y;s|(P, wis) = >, kI (pr < wis < Prt1).
Estimates are marginalized over the posterior distribution of parameters and latent states.

5 Applications

5.1 FIA

FTA data are publicly available at http://www.fia.fs.fed.us/tools-data/index.php. The
predictors for the FIA data include climate variables, soils, and local drainage, discussed here:
Stand age: Recorded as part of the FIA census for each plot.

Temperature: The mean annual temperature (basal area example) and winter temperature
(trait example) are from the MODIS land surface temperature. Winter temperature is for the
months December, January, and February (Fig. [S3f).

Deficit: A regional indicator of drought. The hydrothermal deficit is the degree hours ac-
cumulated for months with a negative water balance, reflecting the major limitations on net
primary productivity, solar radiation, temperature, and moisture. Water balance variables are


http://www.fia.fs.fed.us/tools-data/index.php

temperature T;,, precipitation Pj,,, and PET;, for location ¢ and month m. Months with a
negative water balance,

1, P, < PET;,
Dimz{’ < (518)

0, Pim = PETy,

scale the degree-hours DH;,, = T;,, x DF},,, where the second factor is the average daylight
fraction for month m. The deficit is

12
Di = DHp, X Dip, (S19)
m=1
(Fig. |S3p).
a) Hydrothermal Surplus b) Hydrothermal Deficit
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Figure S4: Soil types used as a multilevel factor.
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Surplus: The hydrothermal surplus is the degree hours accumulated for months with a nega-

tive water balance (see Eq. [S18))(Fig. [S3h).

Topography: Slope and aspect are captured by three variables,

sin(slope;)
u;, = ¢ sin(slope;) sin(aspect;) (S20)
sin(slope;) cos(aspect;)

There is a main effect of slope, but there can be no main effect of aspect independent of slope.
If the first coefficient is not different from zero, then slope does not affect the response. If both
of the last two coefficients are not different from zero then aspect does not affect the response
(Clark 1990).
Soils: Soil types constitute a factor with 5 levels, Entisol-Vertisol, Mollisol, Spodosol-Histosol,
Ultisol-Udults-Kanhapludults (Piedmont Plateau soils), and remaining Ultisols. Data were
extracted from the State Soil Geographic (STATSGO) database Fig. [S4)). For each FIA plot,
soil types are categorized based on the first to third soil taxonomy orders. To limit the number
of levels in the model similar first order classes were merged into the categories listed above.
Entisol -poor profile development
Vertisol -plastic clays
Mollisol -former prairie rich soils
Spodosol, Histosol -moist, organic, nutrient-poor, low pH
Ultisol, Udults-Kanhapludults -clay rich
Moisture index: A FIA soil class variable related to moisture (Fig. [S3(d).

The predictors are not highly correlated with one another, and variance inflation factors
are well below levels that would cause concern (j 3).

5.2 EMP

The EMP data used in this analysis are publicly available at http://www.earthmicrobiome.
org.
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