Droughts and climate-change-driven warming are leading to more frequent and intense wildfires. We use satellite and autonomous biogeochemical Argo float data to evaluate the effect of 2019–2020 Australian wildfire aerosol deposition on phytoplankton productivity. We find anomalously widespread phytoplankton blooms from December 2019 to March 2020 in the Southern Ocean downwind of Australia. Aerosol samples originating from the Australian wildfires contained a high iron content and atmospheric trajectories show that these aerosols were likely to be transported to the bloom regions, suggesting that the blooms resulted from the fertilization of the iron-limited waters of the Southern Ocean. Climate models project more frequent and severe wildfires in many regions1,2,3. A greater appreciation of the links between wildfires, pyrogenic aerosols13, nutrient cycling and marine photosynthesis could improve our understanding of the contemporary and glacial–interglacial cycling of atmospheric CO2 and the global climate system.
See Press coverage: