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Geochemical and boron, strontium, and oxygen isotopic
constraints on the origin of the salinity in groundwater
from the Mediterranean coast of Israel

Avner Vengosh,! Arthur J. Spivack,?2 Yohanan Artzi,> and Avner Ayalon*

Abstract. In order to identify the origin of the salinity and formation of saline plumes in
the central part of the Mediterranean coastal aquifer of Israel, we determined the
elemental and boron, strontium, and oxygen isotopic compositions of fresh and brackish
groundwater (Cl up to 1500 mg/L). We distinguish between two key anthropogenic
sources: (1) sewage effluents used for irrigation with high Na/Cl, SO,/Cl, and B/Cl ratios
and low Br/Cl ratios relative to seawater ratios, low 8''B values (0-10%0) and high 530
values (>—4%so); and (2) imported water from the Sea of Galilee that is artificially
recharged to the aquifer with high Br/Cl (3 X 1073) and 6'%0 values (—1%o) and a low
87Sr/%68r ratio of 0.70753. The brackish groundwater from the saline plumes have relatively
low Na/Cl ratios (0.5-0.8) and high Ca/Mg, Mg/Cl, and Ca/(SO, + HCO,) (>1) ratios
relative to seawater ratios; marine SO,/Cl and Br/Cl ratios; 8B values of 24.8—49.9%;
8180 of —2.95%o0 to —4.73%o0; and ®’Sr/*Sr ratios of 0.708275—-0.708532. The composition
of most of the investigated groundwater from the saline plumes differs from those of the
anthropogenic sources, imported water, fresh uncontaminated groundwater (¥’Sr/®Sr of
0.70866, 8''B of 20-30%o0), and saline water from the adjacent Eocene ac!;uitard. Only in
areas of artificial recharge does local groundwater have high Br/Cl and 8'®0 values that
are typical to the Sea of Galilee. The linear relationships between chloride and most of
the ions, including B and Sr, the relatively high §''B (>30%o0) and low 820 (<—4%o)
values, and the chemical signature of the saline plumes (e.g., marine Br/Cl and SO,/Cl
ratios), suggest that (1) mixing processes control the chemical composition of the brackish
water within the aquifer, and (2) the saline postulated end-member has a chemical
composition that resembles modified seawater with a marine and higher 8!B values, and
a 87Sr/358r ratio of <0.7083. We propose that most of the salinization phenomena and the
formation of saline plumes in the inner parts of the coastal aquifer are derived from
upconing of underlying natural saline water bodies and enhanced by overexploitation and

draw-down of the overlying fresh groundwater.

1. Introduction

Salinization is one the most widespread processes that de-
grades water quality and endangers future water exploitation.
In many areas, particularly in arid and semiarid zones, ground-
water salinization limits the supply of potable fresh water. This
problem is intensified in coastal aquifers where human activi-
ties (e.g., water exploitation, agriculture, reuse of wastewater)
result in accelerating water-quality deterioration. Monitoring
and identifying the origin of the salinity are crucial for water
management and remediation. Yet the variety of salinization
sources, particularly in unconfined aquifers, makes this task
difficult. Groundwater salinization can result from either point
sources (e.g., leakage of industrial and domestic waste water,
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recharge of saline water) or nonpoint sources (e.g., agriculture
return flows, irrigation with sewage effluent) derived directly
from anthropogenic contamination. Salinization can also occur
because of “natural processes” such as seawater intrusion and
saline-water flow from adjacent or underlying aquifers [e.g.,
Maslia and Prowell, 1990].

The Mediterranean coastal aquifer (Figure 1) is one of the
important water resources in Israel, supplying 20% of the na-
tional water consumption. The salinity of groundwater in this
aquifer has increased during the last few decades, and saline
plumes have formed in its central region. Several explanations
to the rise of salinity in the aquifer include (1) recycling of salts
from irrigation of local groundwater and/or evapotranspiration
of meteoric water; (2) contamination by irrigation and/or leak-
age of wastewater; (3) recharge and irrigation with imported
water from the Sea of Galilee; (4) flow of saline water from the
adjacent Eocene aquifer in the east; and (5) upconing of saline
water from underlying sources [Magaritz et al., 1990; Mercado,
1985; Ronen et al., 1987; Rosenthal et al., 1992; Vengosh and
Rosenthal, 1994; Vengosh and Ben Zvi, 1994].

The purpose of the present study is to establish the mecha-
nism(s) for groundwater salinization and to identify the
sources of salinity by utilizing an array of geochemical and
isotopic tracers (boron, strontium, and oxygen). Each of these
isotopic tracers has previously been used separately to delin-
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Figure 1. (a) A general map of the Mediterranean coastal aquifer in Israel and (b) the study area with the
saline spots. Wells locations are marked by solid circles. Note the locations of the saline spots and chloride
concentrations (in milligrams per liter) of the most saline wells in that area.

eate fluid origins and chemical modifications, for example,
oxygen for tracing the source and nature of the recharged
fluids [e.g., Gat, 1974, 1981], boron for identifying the impacts
of anthropogenic sources [e.g., Vengosh et al., 1994], and stron-
tium for evaluating water-rock interactions [e.g., Banner et al.,
1989; Chaudhuri et al., 1987; Fritz et al., 1987; Johnson and
DePaolo, 1997a, b). Yet integration of isotopic data for a va-
riety of elements provides a better diagnostic tool for deter-
mining the origin of the salinity.

2. Hydrogeological Setting

The coastal aquifer lies along the Mediterranean coast of
Israel (Figure 1) and is composed of Pliocene-Pleistocene cal-
careous sandstone (Figure 2) and layers of clays [Gavish and
Friedman, 1969). Its thickness varies from 200 m in the west
along the coastline to a few meters in the eastern margins,
20-25 km east from the seashore. In the western margins the
aquifer is divided into several confined aquifer systems (suba-
quifers) with different piezometric levels. In its central and
eastern parts there are no continuous partitioning layers and

the aquifer is not confined. In most parts of the aquifer, the
unsaturated zone is made of calcareous sandstone (kurkar),
loam (hamra), and heavy soils. In its western part the unsat-
urated zone consists of sandstone that is reflected by the high
quality of the local groundwater (<50 mg CI/L). In most areas
the aquifer overlies thick and relatively impermeable units of
the Sagiye Group. The Saqiye Group (Figure 2) is composed
of (1) Oligocene and early Miocene marls of the Bet Guvrin
Formation; (2) middle Miocene marls of the Ziqgim Formation;
(3) upper Miocene evaporite units (representing the Messinian
event); and (4) Pliocene-aged units of alternating thick marine
shales and limestone sandstone layers of the Yafo Formation.
Along the eastern margin the aquifer rests upon the Eocene
(Shefela Group) aquitard in the southern coast (Figure 2).
The annual volume of groundwater pumped from the aqui-
fer, starting from the 1950s, has been 400 X 10° to 450 X 10°
m°/yr, about one fifth of the total water consumption in Israel
[Water Commissioner, 1995). Overexploitation beyond the nat-
ural replenishment (~340 X 10° m>/year) caused a continuous
drop in piezometric levels between the 1950s and late 1980s.
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Figure 2. Schematic hydrogeological cross section of the coastal aquifef and lithohydrological units.

As a result, hydrologic depressions formed in the central areas,
changing the natural east-to-west flow regime in the aquifer.
Since the early 1990s, pumping has been reduced and water
levels have consequently increased. Nevertheless, groundwater
salinization, which began during the 1950s, has continued de-
spite the restoration of the water levels in the last 10 years. In
the Be’er Toviyya region (Figure 1) the parallel increase in
water level and salinity has continued since the late 1960s
{Vengosh and Ben Zvi, 1994]. As a result, saline plumes and
spots have devEloped in the inner parts of the aquifer and in its
eastern margin8 (Figure 1). The locations of most of the saline
plumes are associated with the hydrologic depressions in the
central part of the aquifer. Several saline spots have existed
since the 1930s [Artzi, 1999; Vengosh et al., 1996].

3. Methods
3.1. Sample Description

The selected research area represents saline plumes from
the central and eastern parts of the aquifer. From 1992 to 1995
we collected groundwater from pumping wells in areas of high
salinity (Figure 1). We also collected fresh uncontaminated
groundwaters (<100 mgCl/L) from the western part of the
aquifer. ’

In order to characterize the geochemical composition of the
anthropogenic sources that may affect the salinization pro-
cesses, we investigated imported water from the National Wa-
ter Carrier, originating from the Sea of Galilee, as well as
treated sewage effluents. The treated sewage effluents, used
for irtigation over the aquifer in the central coast, were sam-
pled from open reservoirs. The imported waters of the Sea of
Galilee are transported through the National Water Carrier

and are used for domestic use and irrigation over the coastal
plain. In addition, a large volume (~20 X 10° m*/year during
the last five years) has been recharged into the the aquifer
since the mid 1960s through Lake Azriga’m (an artificial lake
in an old quarry), northwest of Be’er Toviyya; Lake Merar,
south of Giva’t Brener; and recharge wells in the Giva’t Brener
area.

3.2. Analytical Techniques

Elemental analyses were carried out in the analyticai labo-
ratory of the Hydrological Service in Jerusalem. Boron con-
centrations were determined with a modified spectrophoto-
metric techniqui using the reagent Azomethine H [Kiss, 1988].
Bromide concentrations were determined by flow injection ion
analyzer (QuickChem 8000) [Vengosh and Pankaratov, 1998].

Boron isotopic compositions in samples were determined by
negative thermal ionization mass spectrometry (NTIMS) [Ven-
gosh et al., 1989; Eisenhut et al., 1996]. Boron was separated
from natural samples with a boron-selective resin, Amberlite
IRA-743 [Kiss, 1988], eluted with 1 N HCI, mixed with a solu-
tion of MgCl, and Ba(OH),, loaded onto Re single filaments,
and analyzed with a reverse polarity, “dyramic” collector, the
Finnigan MAT-261 mass spectrometer, at the University of
Regensburg, Germany. Details of the analytical and mass spec-
trometry procedures are given by Eisenhut et al. [1996]. Some
samples were analyzed with a VG-336 mass spectrometer at
the University of North Carolina, Wilmington, in which a B-
free seawater matrix was added to enhance ionization. The
mode of filament loading and mass spectrometry procedures
were strictly repeated in samples and standards were used in
order to minimize the variability of mass spectrometer—
induced isotopic discrimination. A standard deviation of up to
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2%0 was determined by repeat analyses of National Institute of
Standards and Technology (NIST) SRM-951 standard. Isotope
ratios are reported as per mil deviation (8''B) in the 'B/*°B
ratios relative to the measured standard, NBS SRM 951:

8B = [(MB/IOB)sample/(llB/IOB)NBS 951 — 1] X 1000

The mean of the absolute *'B/'°B ratios of NIST SRM-951
replicates analyzed with the samples was 3.9935 *+ 0.008 (at
Regensburg) and 4.015 = 0.005 (at Wilmington). Duplicate
mass spectrometry analyses were carried out for some of the
samples with external precision below 2%o. Moreover, several
samples were cross-checked by analyzing them at Regensburg
and Wilmington. Their ratios were identical, within the 2%.
precision.

Strontium was separated by cation exchange chromatogra-
phy using standard techniques. Isotope ratios were determined
using a two-detector dynamic collection routine on a VG-3361
mass spectrometer at the University of North Carolina, Wil-
mington. We used tungsten filaments. Prior to collection of Sr
ratios, *Rb was monitored by Daly detection to insure that the
87Rb isobaric interference was negligible. All measured ®’Sr/
86Sr results were corrected to an *°Sr/*8Sr ratio of 0.1194 using
exponential correction. Through this procedure, seawater ’Sr/
88Sr yielded a ratio of 0.70923. Fractionation corrected ratios
were normalized to the measured seawater ratio assuming that
the modern seawater ratio is 0.709199.

Oxygen isotope ratio measurements were made on a VG
SIRA-II mass spectrometer at the Geological Survey of Israel.
Results are given in per mil values with respect to the standard
mean ocean water (SMOW) standard (8'®0) [Craig, 1961].
The §'80 value of the water was determined after equilibration
with CO,, by shaking with 2 mL of water for 4—6 houts at 25°C
[Epstein and Mayeda, 1953]. Analytical reproducibility of du-
plicates measured on different days was better than 0.1%eo.

4. Results

4.1. Anthropogenic Sources

Treated waste waters are characterized by a salinity range of
300 to 550 mg CI/L, and a wide range of ion ratios (Table 1).
High Na/Cl, SO,/Cl, B/Cl, K/Cl and low Br/Cl ratios relative to
the marine ratios are typical of waste water from the Dan
Region [Vengosh and Keren, 1996] (Figure 3). Waste water
from open reservoirs has §'%0 values of —3.45%o to 0.92%o
(Table 1). Imported water from the Sea of Galilee has a sa-
linity of 220 mg CI/L, a high Br/Cl ratio (3 X 1073), a 6'%0
value of —1%eo, a 8*'B of 22.8%so, and a low ¥7Sr/*°Sr ratio of
0.70753.

4.2. Brackish Groundwater

The brackish groundwater in the investigated area (Table 2)
is depleted in Na* and K*, and enriched in Mg?* and Ca®*
relative to diluted sea water with a similar salinity (Figure 4).
In addition, we found small but consistent differences between
the different saline spots: (1) in groundwater from Yavne,
Hazor, and Be’er Toviyya there is a linear correlation between
Cl~ and Ca®*, whereas in Giva’t Brener the Ca%* variation is
scattered; (2) in groundwater from Yavne and Be’er Toviyya
the SO;~ content is depleted, whereas in Giva’t Brener it is
enriched relative to the seawater SO,/Cl ratio; (3) in ground-
water from Yavne the Na/Cl and SO,/Cl ratios decrease, and
Ca/(HCO3 + SO4) increases with salinity, while in Giva’t

Table 1. Chemical Composition of Investigated Treated Sewage Effluents From Open Reservoirs in the Central Coastal Plain of Israel and the Sea of Galilee
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Imported Water

0.15
1.07

2.73
2.97

1.029 0.191 0.030 0.106

032 0174 0.539 0.187 0.027 0.060

2.00 0.02 0.017 0.001 0.01 0.80 045 0.183
255 0.03 0.018 0.006 0.02 0.81

—098 223 120 1.17 504 0.19 6.29 0.67
1.00 209 1.11 2.05 4.77 016 5.90 0.95

Oct. 18, 1995
Oct. 18, 1995

Sea of Galille

Azriga’am

Ca/(SO, + HCO;) in meq/L.

Concentrations are reported in mmol/L, ratios are molar, and chloride is also reported in mg/L unit. Q
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Chemical composition of sewage effluent and Sea of Galilee
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Figure 3. Different ions to chloride (molar) ratios versus chloride concentration (in milligrams per liter) of
sewage effluents from the Dan Region Reclamation Plant and open reservoirs in the coastal plain of Israel. Note
the high Na/Cl, K/Cl, SO,/Cl, B/Cl, F/Cl and the low Br/Cl ratios of wastewater relative to the marine ratios.

Brener these ratios do not show any trends; (4) most of the
brackish water has a marine Br/Cl ratio, while some samples
from Giva't Brener and Hazor have high Br/Cl ratios.

The §''B values of the brackish groundwater range from
24,8%0 t0 49.9%o0, and ¥7Sr/*°Sr ratjos range from 0.708275 to
0.708532 (Table 3). Fresh water from the western part of the
aquifer (Cl < 100 mg/L) has lower 8''B values (21.2-32.4%o
[Vengash et al., 1994]) and higher 87Sr/*Sr ratios (0.708609—
0.708663; Table 3).

It should be noted that most of the isotopic results are reported
for samples collected at different times. For example, several
wells (Hazor A, Yavne 3, G. Brener Levinson, Gedera Moa’za,

Gedera Gan Mordechai, and Revadim) were measured for
boron isotopes both in 1992 and 1995 (Table 3). The 8''B
results show a range of 0.3%¢ to 10%o0 difference, which is
attributed to the natural variability of the boron isotopic ratio.

5. Discussion

The continued rise of salinity with time (Figure 5) reflects an
increasing fraction of a saline source that is degrading the
groundwater quality. Assuming that the saline source has a
high salt content relative to original local groundwater, which
has a chloride concentration of less than 100 mg/L, based on
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Figure 4. Chloride versus dissolved ions concentrations (mmole/L) in groundwater in the study area as
compared to seawater ratio (solid line). Note the differences among the saline spots. The dashed line Y
represent chemical variations observed during sampling for several hours of well Gan Darom (see in Table 2).
Note also the linear relationships between Ca and Cl in groundwater from Be’er Toviyya (BT) and Hazor (H).

historical data, a small fraction of saline water would dominate 5.1. The Chemical and Isotopic Characteristics of the

the chemical and isotopic compositions of the contaminated Potential Saline Sources

groundwater in the saline plumes. The following sections char-

acterize the different types of the potential saline sources and Known potential saline sources in the Mediterranean coastal
compare them to the composition of the brackish groundwater.  aquifers of Israel include lateral saline water flows from the
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Table 3. Boron and Strontium Isotopic Compositions of Investigated Groundwater From the Central Coastal Aquifer of

Israel
B/Cl
Source 1D Date SU'B  87Sr6Sr SE Sr cl St/Cl Sr/Ca B (x1000)
Mediterranean sea water 39.0 0.709200 9.59 22000 0.18 0.00038 5.3 0.8
Be’er Toviyya Saline Plume

Be’er Toviyya 5 12612402  July 9, 1995 0.708338 391E-05 1.70 763 090 0.0031 oo oo
Be’er Toviyya 5 12612402  July 13,1992  46.2 e cee .- 404 oo .- 0.18 1.48
Be’er Toviyya 7 12612302  June 13, 1995 -+ 0.708275 3.80E-05 1.40 587 1.92 0.0028 .- oo
Be’er Toviyya 7 12612302  July 1, 1993 40.3 .- cee .- 544 ces .- 0.24 145
Kefar Varburg D 12512302  July 6, 1995 --- 0.708384 1.70E-05 1.50 644 1.88  0.0029 .- oo
Kefar Varburg D 12512302 July 1, 1993 414 e e ‘e 257 e e 0.14 1.8
Kefar Varburg A 12512401  July 12,1992  45.6 457 0.26 1.88
Be’er Toviyya 3 12612403  July 13,1992  47.6 715 0.26 1.17
Be’er Toviyya 6 vee July 1, 1993 49.9 711 0.32 1.48

Hazor
Hazor A Kibutz 13212302  Aug. 1, 1995 353 0.708495 9.00E-05 1.70 489 2.80 0.0032 0.29 1.94*
Hazor A Kibutz 13212302  July 19,1992  31.7 e ve- e 508 oo e 0.16 1.03
Hazor kibutz B 13112301  July 20, 1992  32.6 303 0.20 2.13
Hazav 1 13312602 Aug. 16,1992 349 333 0.20 2.01
Ashdod 5 12711701  July 16, 1992 319 410 0.10 0.76
Ashdod 6 12811902  July 16, 1992  33.7 325 0.33 3.33
Ashdod 2 12911801  July 16,1992 375 345 0.39 37
Ashdod 10 13012001  July 16, 1992  36.6 ore e cos 333 e cen 0.42 4.14
Gan Hadarom 1 13412102  Aug. 31,1995 ---  0.708473 1.40E-05 2.20 520 341 0.0045 oo e
Gan Hadarom 1 13412102  June 6, 1993 38.0 oo oo oee 705 oo oee 0.19 0.88
Gan Hadarom 1 13412102  June 6, 1993 30.6 576 0.18 1.02
Gan Hadarom 1 13412102  June 6, 1993 321 640 0.19 0.97

Giva’t Brener

G. Brenner Levinson 14013104 Oct. 18,1995 37.2 0.708532 3.41E-05 1.60 414 311 0.0023 0.18 1.43*
G. Brenner Levinson 14013104  July 17, 1995 28.8 e ver cor 412 e e 0.19 1.52
G. Brenner Siman Tov 14013102 July 17, 1995 383 343 0.19 1.77
G. Brenner Berkovitz 14213001  July 17, 1995 484 405 0.12 0.96
Giva’t Brenner A 14113103  July 17, 1995 29.6 328 0.13 1.25
G. Brenner Meshtefet 14113104  July 17, 1995 24.8 218 0.14 2.05
Kevuzat Shiler C 14213002  July 17, 1995 48.5 251 0.10 1.35
Kevuzat Shiler B 14112902  July 17, 1995 449 258 0.13 1.67

Gedera
Gedera Moa’za 13512901 Awug. 31,1995 399 0.708425 290E-05 1.50 479 252 0.0026 0.20 1.37*
Gedera Moa’za 13512901 May 24,1993  35.1 oo cee vee 463 o cer 0.25 1.77
Gedera Moa’za 13512901 May 23,1993  35.1 e oo oo 471 vee e 0.24 1.67
Gedera Gan Mordechai 13512902  July 6, 1994 344 0.708393 3.40E-05 2.50 772 2.61 0.0031 0.32 1.36*
Gedera Gan Mordechai 13512902 May 23,1993  43.2 cee cee oo 731 oo eee 0.28 1.26

Yavne
Yavne 3 13812701 Aug. 30,1995 --- 0708345 1.60E-05 1.30 407 257 0.002 oo e
Yavne 3 13812701  July 1, 1992 34.6 e oo oo 363 cee ee 0.17 1.54
Yavne 3 13812701 Aug. 1, 1995 43.6 407 0.16 1.29*
Yavne 2 13812401  July 1, 1992 329 e 405 0.11 0.89
Yavne C 13512203  July 1, 1992 35.6 cos 221 0.18 2.64
Yavne A 13512301  July 1, 1992 329 oo 227 0.21 2.96
Yavne 13 13712401  July 1, 1992 30.2 135 0.12 2.94
Yavne 10 13712601 July 1, 1992 344 221 0.20 2.94

Revadim
Revadim kibuutz 13113201  Aug. 1, 1995 38.5 0.708473 6.70E-05 2.80 1352 1.67 0.0039 0.62 1.50*
Revadim kibuutz 13113201  July 15,1994  38.2 oo v .. 1409 e oee 0.67 1.56
Freshwater
Ashdod 19 13211504  July 3, 1995 0.708663 3.40E-05 0.40 29 11.11 0.0035
Ashdod 18 13211503  June 3, 1995 «=-  0.708609 3.80E-05 0.50 47 8.57 0.0027 oo .-
Ashdod 18 13211503  July 16, 1992 29.8 oo oo e 45 oo e 0.13 9.18
Ashdod 14 1311502  June 13, 1995 «+»  0.708660 1.60E-05 0.40 32 1007 0.0031 e oo
Ashdod 17 13211502  July 16, 1992  30.5 e e 0.01 48 e oo 0.10 6.83
Imported Water (Sea of Galilee)

Azriqam reservoir® Oct. 18,1995 228 0.707528 1.40E-05 0.60 223 2.17  0.0028 0.10 1.47
Azriga’m well 12812201  Oct. 18, 1995 0.708350 1.95E-05 0.85 207 331 0.0033 oo oo
Giv’at Brenner 6 14012701  Aug. 30, 1995 0.708149 3.19E-05 0.80 221 292 0.0021

Isotopic results are reported in 5''B values as normalized to the standard NBS SRM-951.
*Analyses by MS VG-336 at Wilmington, North Carolina.
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Figure 5. Variation of chloride concentrations with time of selected wells from the saline plumes in the
center of the aquifer. Note the comparisons to drinking-water limit regulations of chloride concentrations.

adjacent eastern Eocence aquitard, anthropogenic salt flux
from the surface via irrigation with wastewater over the aqui-
fer, and artificial recharge and irrigation of imported water
from the Sea of Galilee. In addition, recycling of fresh water
through pumping and irrigation may also result in long-term
accumulation of salts in a phreatic aquifer. The chemical and
isotopic compositions of these sources are summarized in Ta-
ble 4 and Figure 6.

Saline water from the Eocence aquitard has a wide range of
salinity, up to 5000 mg CVL [Rosenthal et al., 1992; Nissim,
1991; Vengosh and Rosenthal, 1994; Y. Livshitz, The influence
of natural and artificial factors on the chemical composition of
groundwater in the north-western Negev and southern part of
the coastal plain, Ph.D. thesis in preparation, 1999]. Recent
studies [Arezi, 1999; Y. Livshitz, Ph.D. thesis in preparation,
1999] indicate two major types of saline groundwater: type 1,
shallow groundwater associated with fluvial sediments charac-
terized by high Na/Cl (1.2), SO,/Cl, and B/Cl ratios; and type
I1, deep saline groundwater characterized by marine Na/Cl and

SO,/Cl ratios. Artzi [1999] shows that a saline spring near
Hulda, located east of the research area, along the eastern
margin of the coastal aquifer, has geochemical characteristics
that are typical of type II. The only available geochemical data
of saline water of type I indicate high B/Cl ratios, 87Sr/*6Sr
ratios of 0.708102-0.708132, and &''B values of 38—48.5%0
(A. Vengosh and A. Starinsky, unpublished data, 1995).
Uncontaminated fresh water (Cl < 100 mg/L) from the
western part of the aquifer has high Na/Cl (>1) and Br/Cl
(>1.5 X 107°) values [Vengosh and Pankaratov, 1998], 60
values of about —5%o [Gat, 1981}, low 6''B values of 21.2—
32.4%o, [Vengosh et al., 1994], and a 37Sr/**Sr ratio of 0.70866.
Domestic wastewaters from the Dan Region Reclamation
Project and some wastewaters (i.c., with a chlorinity of ~300
mg/L) from open reservoirs in the central coast of Israel are
characterized by a unique anthropogenic chemical signature.
High Na/Cl (1.1), SO,/Cl, and B/Cl (5 X 1073) as well as low
Br/Cl ratios (5 X 10™*) are attributed to applications of NaCl
salt and boron-enriched detergents [Vengosh et al., 1994; Ven-
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Table 4. The Chemical and Isotopic Compositions of Potential Saline Sources and Major Saline Plumes From the Coastal

Aquifer

Source Cl, mg/L Na/Cl SO,/Cl Br/Cl, X103 B/Cl, x10° 8180, %o 6B, %o 87Gr/%0Sr
Seawater* 440 0.86 0.05 1.5 0.8 -5 39 0.70923
Wastewater 300 1.1 0.09 0.5 2to5 -3tol 0to 10 see
Sea of Galilee 220 0.78 0.06 3.0 1, -1 23 0.70753
Eocene saline water
Nahal Oz 2 1300 1.23 0.12 14 8.7 e 43 0.70813
Hulda spring 1300 0.86 0.05 1.5 1.8 ees e ces
Saline Plumes
Revadim 1350 0.66 0.05 1.5 1.5 —4.2 38 0.708473
Gedera 772 0.54 0.05 1.6 1.8 -4.0 43 0.708393
Be’er Toviyya 763 0.78 0.05 14 1.8 —4.5 46 0.708338
Hazor 516 0.76 0.05 1.5 1.7 —4.0 35 0.708495

*Fifty times diluted.

gosh and Pankaratov, 1998]. The variations of the different ion
ratios with chlorinity (Figure 3) suggest that the fluids in the
open reservoirs are a mixture of domestic sewage effluents
with a salinity of about 300 mg/L (i.e., typical of the sewage
from the Dan Region Reclamation Project) and local brackish
groundwaters with higher chlorinity and lower Na/Cl, SO,/CI,
and B/Cl ratios that were added to the reservoirs. Although
this addition reduces these ratios, the anthropogenic geo-
chemical signature is still distinguishable (at least for several
parameters like SO,/Cl, Br/Cl, B/CI ratios) from the marine
ratios (Figure 3). The effluents are also enriched in 30 (rel-
ative to local groundwater) because of the evaporation in the
open reservoirs. Vengosh et al., [1994] have shown that sewage
effluents are characterized by 8''B values in the range of
0-10%o0. Consequently, the assemblage of high Na/Cl, SO,/CI,
and B/Cl ratios; low Br/Cl ratios; low §''B values; and high
3180 values are typical of domestic wastewater in Israel, in
particular wastewater that is being used for irrigation in the
central part of the coastal aquifer.

Imported waters from the Sea of Galilee are characterized
by high Br/Cl (3 X 1073) and 680 values (—1%o), which are
related to the origin of brines flowing to the Sea of Galilee
[Starinsky, 1974], and evaporation processes over the lake [Gat,
1974, 1981], respectively. The high Br/Cl ratio differs from the
typical low Br/Cl characteristic of domestic wastewater. The
87Sr/88Sr ratio of the Sea of Galilee is 0.707520.

5.2. Water-Rock Interactions

There are significant chemical and isotopic differences be-
tween the potential saline sources (Table 4). Nevertheless,
these geochemical characteristics may be considerably modi-
fied because of water-rock interactions. Mechanisms that can
modify the original chemical and isotopic compositions are (1)
base-exchange reactions with clay minerals that affect Na™,
Ca’*, and Sr** and hence the Na/Cl, Ca/(SO, + HCO,), and
87St/%%Sr ratios; (2) adsorption onto clay minerals, which af-
fects B, K*, and 8''B; and (3) carbonate dissolution-
precipitation, which affects Ca®*, Sr>*, and HCO,- ions and
87S1/%8Sr ratios. Consequently, while §'%0, Cl1~, and Br/Cl are
considered to be conservative tracers in the aquifer system, the
other geochemical and isotopic parameters used in this study
(8"B, ®7Sr/®Sr ratios) may be influenced by water-rock inter-
actions.

The effect of boron adsorption on the isotopic variations is
limited to about 20%o [Spivack et al., 1987], and this would
increase the 8''B values of sewage-contaminated groundwater

to about 20-30%o, since the original sewage signature is
0-10%o [Vengosh et al., 1994]. In contrast, sea water (8'!B =
39%o) would be modified to a higher value, up to 60%0, which
is significantly different from that of sewage-contaminated
groundwater. The influence of the aquifer matrix on the ¥7Sr/
86Sr ratios of dissolved Sr2* is more difficult to determine since
Sr?* can be derived from (1) dissolution of Pleistocene calcite
matrix with a 87Sr/2®Sr ratio of >0.7090 and (2) ion-exchange
with clay minerals [Johnson and DePaolo, 1997a, b].

The effect of water-rock interactions on the Sr isotopic sys-
tematics is recorded in two groundwater samples that repre-
sent the spreading of recharged water in the aquifer, originat-
ing in the Sea of Galilee. The Cl content, Br/Cl ratio, and 880
values of these wells (Azriga’m Sochnot near the recharge
basin of Azriqga’m and Giva’t Brener 6; Table 2) are almost
identical to that of the Sea of Galilee, which reflects a long-
term and direct recharge of the imported water into the aquifer
(i.e., minimum dilution or mixing with local groundwater). In
contrast, the 7Sr/%®Sr ratios of the two wells (0.708350 and
0.708149, respectively) are significantly higher than that of the
recharge water (0.707528). The Sr content in these samples is
also higher, suggesting a considerable addition of matrix-
derived Sr with a higher 87Sr/%*Sr ratio. Consequently, it seems
that dissolution of the Pleistocene matrix with a 37Sr/%5Sr ratio
of >0.7090 can modify the original Sr isotopic composition of
external fluids in the aquifer.

5.3. Elemental Systematics

The chemical variations reflect two major patterns: (1) linear
relationships between Cl~ and Na*, Mg?*, Ca?*, SO?~, and
Br™ in brackish groundwater from the saline areas of Be’er
Toviyya, Yavne, Gedera, and Hazor and (2) nonlinear rela-
tionships which are typical of the Giva’t Brener area (Figure
4). While the linear relationships between Cl~ and the other
ions indicate mixing processes with a distinguishable saline
end-member, the scatter variations suggest water-rock modifi-
cations. The chemical composition of the brackish groundwa-
ter primarily reflects the composition of the saline end-
member, particularly for the ion ratios which are less sensitive
to dilution with low-TDS (total dissolved solids) fresh water.
The variations of Na/Cl, SO,/Cl, Br/Cl, and Ca/(HCO; + SO,)
ratios suggest a saline source with a marine Br/Cl ratio, low
Na/Cl (~0.5) and K/Cl, and high Ca/Mg, Mg/Cl, and Ca/
(HCO; + SO,) ratios relative to sea water.

In brackish water from Revadim area, on the eastern side of
the aquifer, and in the Be’er Toviyya saline plume, Na/Cl ratios
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Figure 6. Values of some of the geochemical and isotopic parameters of the potential saline sources as
compared with those of the major saline plumes. Tenfold diluted seawater refers to mixing between seawater

and freshwater with 6'®0 ~ —5%eo.

are higher (0.66 and 0.80, respectively), but this water also has
a Ca-chloride composition (i.e., Ca/(HCO; + SO,) >1). The
Cl-rich water at Yavne has SO,/Cl ratios that are lower than
that of sea water (<0.05), while in the other areas the Cl-rich
water has a marine SO,/Cl ratio.

The chemical composition of the brackish water differs from
those of uncontaminated fresh water (i.e., low chlorinity of
<100 mg/L, which has high Na/Cl and Br/Cl), domestic sewage
effluents used for irrigation (high Na/Cl, SO,/Cl, B/Cl, and low
Br/Cl), imported water of the Sea of Galilee (high Br/Cl), and
both types of saline water from the Eocence aquitard (Table 4,
Figure 6). While the low Na/Cl and high Ca-chloride signals of
the brackish groundwater can be changed by base-exchange
reactions, the SQ,/Cl and Br/Cl are not influenced by these
processes, and are considered conservative tracers. Since these

ratios in the brackish groundwater are different from those in
fresh water (high Br/Cl), the Sea of Galilee (high Br/Cl), and
wastewater (low Br/Cl, high $O,/Cl), we argue that the chem-
ical data rule out (1) recycling of salts from the irrigation of
local groundwater and/or evapotranspiration of meteoric water
(i.e., a long-term salinization from recycling of fresh water), (2)
contamination by irrigation and/or leakage of waste water, and
(3) recharge and irrigation of water from the Sea of Galilee.
The chemical data cannot, hawever, rule out the input of saline
water from the Eocence aquitard of type I with marine Na/Cl,
S0,/Cl, and Br/Cl ratios (e.g., Hulda spring; Table 4). Never-
theless, the above mentioned linear correlations between Cl
and other ions suggest that mixing process comntrol the water
chemistry systematics which is not consistent with base-
exchange reactions.
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The Ca-chloride, low-Na/Cl ratio composition of the brack-
ish groundwater resembles the composition of modified sea
water and hence suggests that the saline plumes are derived
from natural saline waters that originated from sea water and
became depleted in Na* and enriched in Ca®>* and Mg*". Two
mechanisms are known to explain these modifications. The
first is evaporation of sea water followed by halite precipita-
tion, combined with dolomitization. Since sea water has a
Na/Cl ratio less than unity, halite precipitation further reduces
this ratio in the residual brine. Accordingly, the Na/Cl ratio of
0.66 suggests an ~20-fold evaporated sea water (data from
McCaffery et al. [1987]). Conversly, the Br/Cl ratio increases
during precipitation of halite from sea water, and thus one
would expect corresponding high Br/Cl ratios of >1.5 X 1073
[Carpenter, 1978; Starinsky, 1974]. The Br/Cl ratios of most of
the investigated brackish water, however, are marine (Figure
6). Nevertheless, hypersaline brines with a similar chemistry
(e.g., low Na/Cl, high Ca, relatively low Br/Cl ratios) were
found in sabkha environments in the Bardawil lagoon of the
Northern Sinai [Levy, 1977). In addition, saline water with a
chloride content of up to 30,000 mg/L and similar chemistry
was discovered along the western part of the coastal aquifer
[Vengosh et al., 1991},

Alternatively, the relative depletion of Na* and enrichments
of Ca®* and Mg?* may be the result of base-exchange reac-
tions of the original sea water with clay minerals. Accordingly,
the water/reactive clay mineral ratio must be low in order to
have a net affect on the residual brine. In either case, it is clear
that the composition of most of the brackish groundwater
differs completely from those of the anthropogenic sources
and thus eliminates them as the major sources of salinity.

An anthropogenic contribution is apparent in several wells
in the investigated area. In some wells (e.g., Hafetz Hayim C
and Hafetz Hayim Kibbutz) chemical composition reflects con-
tamination from sewage effluents, while in other wells (e.g.,
Giva’t Brener A, 5, and 6, and Azrigam well; Table 2), which
are located near the recharge sites, the impact of the Sea of
Galilee is recognizable. High Na/Cl, SO,/Cl, B/Cl, and low
Br/Cl ratios provide evidence for sewage contamination
whereas the impact of the imported Sea of Galilee is mainly
identified by high Br/Cl ratios and 5'®0 values.

5.4. Oxygen Isotope Systematics

Regional uncontaminated groundwater has 630 values be-
tween —5.5%0 and —4.0%o, with a mean of —4.7%o0 (Figure
7). The 8'®0 values of groundwaters sampled in the present
study vary between —4.8%o to —2.4%o0 (one sample yielded a
value of —0.4%o; Figure 7). Most of the brackish water (22 out
of 33 samples), particularly those samples with high salinity,
has 880 values of <—4%so. This isotopic range generally over-
laps with those of uncontaminated groundwater reported by
Gat [1974, 1981]. The other wells with high 80 values
(>—4%o; Figure 7) are located specifically in Giva’t Brener
and the Azriqa’m area and have also high Br/Cl ratios (>1.5 X
10™3), reflecting local recharge from the Sea of Galilee.

The 880 walues of the brackish water differ from those of
sewage effluents in open reservoirs (8'%0 = —3.5-1%0) and
the Sea of Galilee (—1%e0). Consequently, the oxygen isotope
data confirm that these anthropogenic fluids are not the saline
source for the underlying groundwater. Mixing with sea water
or a brine derived from sea water, as inferred from the chem-
ical data, would not significantly modify the original low 20
value of the fresh groundwater. For example, the total dis-
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Figure 7. Histograms of §'%0 values and chloride versus
8'®0 of groundwater and sewage effluents from open reser-
voirs in the coastal plain of Israel. The §'®%0 values of fresh
uncontaminated groundwater, sampled during early 1970s, are
taken from Gat and Dansgaard [1972]; 8'®0 values below the
dash line (<—4%o) in the lower figure are in the range of
uncontaminated groundwater and thus represent groundwater
samples that are not influenced by anthropogenic (wastewater
and Sea of Galilee) fluids.

solved ions would- increase significantly as a result of ~10%
mixing sea water (i.e., C1 ~ 2000 mg/L), while §'%0 would
increase by only ~0.5%eo.

5.5. Boron Isotope Systematics

In the coastal aquifer system there are several sources of
boron that can affect the isotopic composition of the investi-
gated brackish groundwater {Vengosh et al., 1994]: (1) fresh
groundwater with 8''B values of 21.2-32.4%eo, (2) modern sea
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water with 8''B values of 39%so, (3) a saline source or sources
with unknown &'!B values, (4) wastewater with an anthropo-
genic isotopic signal of 0-10%o, (5) boron derived from dis-
solution of marine calcite matrix with a 8B value of 20-25%eo,
and (6) residual boron, derived from adsorption equilibrium
between dissolved boron and exchangeable boron on clay min-
erals in the aquifer, relatively enriched in "'B.

The boron-chloride relationship in most of the investigated
groundwaters (Figure 8) suggests that boron, like most of the
dissolved ions, is nearly conservative in the aquifer. The brack-
ish groundwaters have B/Cl molar ratios (1.5 X 10~?) that are
approximately twice that of sea water (0.8 X 107%) and 5"'B
values of 25-49.9%. (Figure 8, Table 3). On the basis of these
8''B variations, two types of brackish water are identified: (1)
water with high 5''B values (>40%so), typically of the saline
plumes of Be’er Toviyya and Shieller (see locations in Figure
1), and (2) water from the other saline plumes in the central
aquifer and from the eastern part of the aquifer with a §''B
range of 25-40%o. The 8''B values of the latter group corre-

spond to mixing between a saline source with a seawater-like
8"1B signature and fresh groundwater. Similarly, the 8''B vari-
ations of brackish water from the Be’er Toviyya area corre-
spond to mixing with a saline water with a high §''B value
(>50%o; Figure 8).

The boron isotope composition of the brackish water is
significantly different from those of anthropogenic sources,
such as sewage effluents (8''B = 0-10%0) or sewage-
contaminated groundwater (10-25%o [Vengosh et al., 1994]),
and thus further rule out salinization from leakage or irrigation
with sewage effluents. The high §''B values are similar, how-
ever, to those of saline water associated with saltwater intrusion in
the western part of the aquifer [Vengosh et al., 1994]. Conse-
quently, the 5''B values suggest that the brackish water is derived
from a marine source with a 8''B value of 39%o or higher.

The relatively high B/Cl ratios and 8''B values of the brack-
ish water are not consistent with simple mixing between fresh
water and unmodified Mediterranean seawater. However, high
B/Cl with a marine 8''B signature can be generated during
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evaporation of seawater and precipitation of halite [Vengosh et
al., 1992], which is consistent with the first mechanism sug-
gested earlier for the formation of the saline water. In contrast,
simple adsorption of boron from seawater (i.e., the second
mechanism of modification of scawater by base-exchange re-
actions) would remove isotopically light B from solution and
would result in low B/Cl and high 8"'B values, which contra-
dicts our data.

5.6. Strontium Isotope Systematics

In the coastal aquifer system there are several sources of
Sr?* that can affect the Sr isotopic composition of the inves-
tigated brackish groundwater: (1) fresh water with 37Sr/*°Sr
ratios >0.70860, (2) modern seawater with a 87Sr/®®Sr ratio of
0.70920, (3) saline water with unknown 57Sr/%¢Sr ratios, (4) Sr
derived from dissolution of Pleistocene calcite matrix with a
87S1/%6Sr ratio >0.7090, and (5) “exchangeable Sr” derived
from ion-exchange reactions with clay minerals.

Rainwaters over Israel have a ®7Sr/®SSr range of 0.7078-
0.7092, reflecting mixing of Senonian to Eocene dust and sea
spray dissolved in the rainwater [Herut et al., 1993]. The ¥’Sr/
86Sr ratio of fresh groundwater (Cl < 100 mg/l) is lower than
that of the Pleistocene calcite matrix ~0.7092 [Starinsky et al.,
1980] and thus probably reflects the meteoric #’Sr/3Sr ratio.
The 87Sr/%%Sr ratio of the exchangeable Sr in the coastal aqui-
fer is not known. Johnson and DePaolo [1997b] argued that the
isotopic ratio of the exchangeable Sr reflects the composition
of water with which it has interacted in the past. Since fresh
groundwater in the coastal aquifer is generated within the
aquifer region, the expected ®’Sr/®®Sr of exchangeable Sr is
between 0.70860 (the freshwater ratio) and 0.7092 (the Pleis-
tocene calcite cement ratio).

As shown before, the Sr isotopic ratio of recharged water
from the Sea of Galilee is modified as a result of water-rock
interactions in the aquifer. While Cl, §'%0, and Br/Cl of two
groundwater samples (Azriga’m and Giva’t Brener 6 wells) in
the vicinity of recharge areas are almost identical to those of
the Sea of Galilee, the 7St/®Sr ratios are significantly higher,
reflecting the addition of Sr with a higher 37Sr/*®Sr ratio. This
implies that Sr isotopic exchange is rapid, at least in the time
frame of artificial recharge of the Sea of Galilee to the coastal
aquifer during the last 30 years. The S1/Ca ratio of the brackish
water (~0.003) is higher than that of typical calcite (~0.0005);
thus Sr?* was not derived from simple dissolution of the calcite
cement. Instead, calcite solution/recrystallization would result
in relative enrichment of dissolved Sr** over Ca®>* due to the
low Sr distribution coefficient (0.05) in calcite [Katz et al., 1972].

Although, strontium (Figure 9), as well as calcium (Figure
4), vary linearly with chloride in the brackish waters, the Sr
isotope systematics indicate that Sr is not derivded from con-
servative mixing of two water types. If Sr variations were de-
termined by conservative mixing, the 87Sr/*®Sr ratio should
vary linearly with 1/Sr. This is not the case (Figure 9). Most of
the brackish water samples, particularly those with high salinity
(e.g., Beer Toviyya), have ®Sr/*®Sr ratios scattering between
0.70825 and 0.70855. This is most likely due to the addition of
Sr resulting from carbonate solution/precipitation with a #’Sr/
86Sr in this range or slightly higher. This is also consistent with
the relatively high Sr/Cl ratios.

On the basis of these observations, several conclusions can
be drawn with respect to the origin of the saline component:
(1) there is salinization by an external source with a 87Sr/*°Sr
ratio of <0.7083; (2) the fossil seawater (based on other geo-
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chemical criteria) interacted with carbonate rocks older than
early-middle Miocene carbonates; (3) the postulated saline
water did not originate from modern Pleistocene-age seawater;
and (4) recycling of freshwater through pumping and irrigation
is not the main cause for salinization. Consequently, the Sr
isotopic data confirm an “allochthonous” saline source with an
isotopic composition of older sedimentary rocks.

A ¥7Sr/868r ratio of <0.7083 corresponds to an early-middle
Miocene or older seawater isotope composition. In principle,
this may indicate that the saline source is derived from early-
middle Miocene or older seawater or that younger seawater
interacted with carbonate rocks of that age and the Sr isotope
composition of the water was reset by this interaction. On the
basis of its relatively high Sr/Cl ratio (Figure 9a; Table 3), it is
clear that the Sr isotope ratio is the result of water-rock inter-
action, and it thus does not constrain the time of the intrusion
of the fossil seawater. The combination of high Ca/Mg ratios
and the low ¥7Sr/®5Sr ratio of <0.7083 of the postulated saline
end-member indicates that the original seawater was modified
during dolomitization reactions with early-middle Miocene or
older carbonates. According to this approach, the %7Sr/®Sr
constrains the minimum age of the carbonate rocks with which
evaporated seawater interacted. During dolomitization, the
original high 7Sr/%¢Sr ratio of the sea water would be reduced
if the carbonate rocks are older [Sass and Starinsky, 1979;
Starinsky et al., 1983; Stein et al., 1997]. Thus the 87Sr/%5Sr ratio
of the residual Ca-chloride brine is controlled by (1) the 87Sr/
86Sr ratio and age of the carbonate rock, (2) the fraction of
Ca?* (and Sr**) derived from the rock (i.e., degree of inter-
action [Sass and Starinsky, 1979]), and (3) the initial 87Sr/®Sr
ratio of the evaporated seawater. The early-middle Miocene Sr
isotopic signal can be a result of any combination of these
processes, but indicates that the original seawater could not
have interacted with younger carbonate rocks.

6. Conclusions: Synthesis and Mechanism of
Salinization

Figure 10 summarizes the two principal processes that affect
the geochemical composition of the investigated groundwater:
(1) recharge of water imported from the Sea of Galilee, which
is reflected by high "0 and Br/Cl ratios in groundwater in the
vicinity of the recharge areas, and (2) mixing with a Ca-
enriched saline water that has a high 8''B (>40%0) and a low
87S1/3%Sr ratio (<0.7083). The correlation between 8''B and
87S1/5%Sr ratios may also reflect mixing between dissolved B
and Sr, derived from dissolution of the carbonate matrix, and
a high-8"'B, 1ow-¥7Sr/*°Sr saline source. On the basis of the
geochemical and isotopic constraints, we suggest that fossil
secawater has interacted with early-middle Miocene or older
rocks and has been diluted considerably (>10 times) because
of mixing with the local groundwater in the Pliocene-
Pleistocene coastal aquifer. The marine sedimentary record
(Figure 2) along the Mediterranean coast reflects numerous
inland seawater invasions. Remnants of seawater could be en-
trapped on the bottom, below (the Saqiye Group) and adjacent
(Avdat Group; Figure 1) to the coastal aquifer.

The entrapped seawater could enter the coastal aquifer by
two mechanisms: (1) lateral flow from the adjacent Eocene
aquitard in the east and (2) vertical upconing from underlying
saline water sources at the bottom of the aquifer [e.g., Maslia
and Prowell, 1990]. Table 4 shows that the chemical composi-
tion of both types of saline water from the Eocene aquitard are
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Figure 9. Chloride versus strontium concentrations, and 1/strontium versus ®7Sr/®Sr ratios of groundwater
in the study area. Note the enrichment of Sr>* in the brackish groundwater over seawater Sr/Cl ratios. The
different processes represent (1) mixing with low Sr freshwater, (2) mixing with seawater with ¥7Sr/*®Sr ratios
of 0.7092, (3) mixing with saline water with 87Sr/®6Sr ratios of <0.7083, (4) water-rock modification in which
dissolved Sr and/or exchangeable Sr with a high 87Sr/®Sr ratios modifies the original Sr isotopic ratio, and (5)

mixing with recharge of the Sea of Galilee.

different from that of the saline plumes in the aquifer. One
may argue, however, that base-exchange reactions may modify
the original marine-like composition of the Eocence saline
water. Nevertheless, Artzi [1999] showed that the chemical
composition of saline groundwater from the coastal aquifer,
located along the Eocene-Pliestocene contact at the eastern
margin of the coastal aquifer, is identical to that of the Eocene
saline water. Thus the Eocene geochemical signature is clearly
recognized in the adjacent groundwater within the coastal
aquifer, which is different from the composition of the inves-
tigated saline plumes.

We propose the following conceptual model for the salin-
ization mechanism in the Mediterranean coastal aquifer of
Israel. Hydraulic connections between underlying units con-
taining pressurized saline water and the surficial aquifer units
enabled upward flow of the saline water and salinization of the
overlying freshwater. The hydraulic connections between the
overlying aquifer, the low-permeability marine shales (Yafo
Formation; Figure 2), and the lower units were probably es-

tablished through faults, local structures, and unconformities,
as evidenced in the eastern part of the aquifer [Rosenthal et al.,
1992; Weinberger and Rosenthal, 1994]. The evidence that sev-
eral saline spots with high salinity existed since the 1930s [Ven-
gosh et al., 1996] suggests that this salinization process is a
natural phenomenon. It should be noted that salinization re-
sulting from substantial quantitics of saline water that flow
upward because of a fault system that breaches impermeable
units was also demonstrated in the upper Floridan aquifer in
Georgia [Hanshaw et al., 1965; Krause and Randolph, 1989;
Maslia and Prowell, 1990].

The flow of the underlying fossil brine to the aquifer was
enhanced, however, because of the reduction of the hydraulic
pressure and formation of deep hydrological depressions, re-
sulting from extensive pumping of freshwater over the central
parts of the aquifer. The fact that salinization has increased
despite the rise in water levels during the last decade indicates
that the continued upward flux of saline water is still greater
than the down flow and horizontal recharge of freshwater.
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Figure 10. Variations of Br/Cl versus 80 and 8''B versus 3’St/*Sr ratios. Note (1) the influence of the
recharge water from the Sea of Galilee (high Br/Cl and 8'®Q) on local groundwater; (2) the wastewater
signature (low Br/Cl, high §'®0, low 8''B), and (3) the correlation between 8B and %7Sr/%Sr ratios,
indicating mixing between fresh groundwater and a saline source with high §''B and low ¥Sr/*°Sr ratios.
Alternatively, the later reflect mixing between dissolved B and Sr, derived from dissolution of the carbonate
matrix and a high-8"'B and low-*7Sr/®Sr saline source.

The inferred existence of deep saline water has water re-
source implications. Seawater has been considered as the ma-
jor raw material for desalinization in Israel. However, the large
volume of saline groundwater that this work points to may be
a better source for desalinization, as its use may be more
economical and have a reduced environmental impact. More-
over, pumping of underlying saline water may reduce the sait
flux to the aquifer and may reduce the rate of salinization
process. Most of the pumping wells in the coastal aquifer
penetrated to the upper and middle sections of the saturated
zone. Since the inferred saline reservoir occupies the deepest
part of the aquifer, its impact on the overlying freshwater
aquifer has been limited. Thus a new deep drilling program is
required to illuminate the extent and distribution of the saline
reservoir. We suggest that this saline groundwater should also
be considered as an important source for desalinization in
order to solve the severe lack of potable water in the semiarid
area of the Middle East.
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